$\pm \infty$
1689 生,950
GR1658
$\#_{3,350}{ }^{\circ 2}$? RLC Digibridge ${ }^{\circledR}$

Form 1658-0120-D

Instruction Manual

Contents

Specifications
Introduction - Section 1
Installation - Section 2
Operation - Section 3
Theory - Section 4
Service and Maintenance - Section 5
Parts Lists and Diagrams - Section 6

\$
 1689 年,950
 GR1658 RLC Digibridge ${ }^{\text {® }}$

[^0]
Specifications

Measurement Parameters and Modes: Series or parallef R and $\mathrm{Q}_{\text {s }}$ series or parallel L and Q, series or parallel C and D. Continuousrepetitive, single, or averaged (set of 10) measurements; start button intiates single or averaged measurements. Keyboard selection of these and all measurement conditions.

Main Displays: (3 selections); Value display is LED-type numerical readout with automatically positioned decimal points and illumination of units; five digits for RLC (99999) and simultaneously four digits for 00 (9999). Limits display shows comparator bin limits and nominal values. Bin No. display shows the bin assignment of the measured device.

Measurement Rates: Approximately 2,3 , and 7 measurements/second. Keyboard selections are: "slow, medium, fast."

Test Frequencies: Keyboard selection between 2. Accuracy re panel legends is $+2 \%,-.01 \%$. Actual frequencies: for 1658.9700 , $120.00 \mathrm{~Hz} \pm .01 \%$ and $1020.0 \mathrm{~Hz} \pm .01 \%$ (panel legend" 1 kHz ") for $1658.9800,100.00$ and $1000.0 \mathrm{~Hz} \pm .01 \%$.

Applied Voltage: 0.3 V ms, maximum.

Ranges: Automatic ranging for best accuracy; autorange can be inhibited by keyboard selection. Three basic ranges (best accuracy, see tablel of 2 decades each, for each parameter. Automatic extensions to min and max, as tabulated.

Parameser	Minimum	Basic ranges	Maximum
R: 1 kHz	0.0001Ω	2Ω to 2 Ma	9.9990 Mr
R: $120 \mathrm{Hz*}$	0.0001Ω	2Ω เo $2 \mathrm{M} \Omega$	99.999 Mr
L: 1 kHz	. 00001 mH	0.2 mH 10 200 H	999.99 H
L: $120 \mathrm{Hz*}$	0.0001 mH	2 mH to 2000 H	9999.9 H
C: 1 kHz	. 00001 nF	0.2 nF to $200 \mu \mathrm{~F}$	$999.99 \mu \mathrm{~F}$
C: $120 \mathrm{Hz*}$	0.0001 nF	2 nF to $2000 \mu \mathrm{~F}$	99999 \%
Q (with R)	. 0001	(fully automatic)	9.999
O (wimh ${ }^{\text {(}}$)	00.01	(fully automatic)	999.9
D (with C)	. 0001	(fully automatic)	9.999

*120 Hz or 100 Hz , depending on the instrument.
Accuracy: For R, L, and $C: \pm 0.1 \%$ of reading in basic ranges, if quadrature component is small $\ll 10 \%$ of principal measurement), for slow measurement rate. More details given in table. Accuracy of O (with R): $\pm .001$; of O (with L$): \pm .0$; of $\mathrm{O}($ with C$): \pm .0005$; in basic ranges, for D or $\mathrm{Q} \ll 1$; (otherwise, see table).

*Factors: M is 1,2 , or 5 for SLOW, MEDIUM, or FAST measurement rate, respectively. K is the quotient /RLC basic accuracy)/ (PLC basic accuracy in basic rangel. Therefore, $K=1$ in basic ranges. ** 120 Hz or 100 Hz . F Fixed offset "zero" capacitance is $<2.0 \mathrm{pF}$.

Bias: Connector for external voltage source, on-off switch, and indicator light. Limit, $60 \mathrm{~V}(\mathrm{max})$. External source requirements: ripple $<1 \mathrm{mV}$ pk-pk, dynamic $Z \ll 1 \Omega$ with currents of $\pm 50 \mathrm{~mA}$ pk (source and sink); external discharge circuit recommended.
Supplementary displays: Parameters, modes, overrange and underrange conditions, range held, bias on, and remote control.
Sorting: Limit comparator sorts us a DQ limit and up to 8 pairs of RLC limits into 10 bins, convenientiv defined by kevboard entries. GO/NO-GO is indicated, whether bin number or measured value is selected as main display.
Interface option: 2 ports 11 with choice of 2 modes); a 24 -pin connector for each port. IEEE-488 INTERFACE POPT: Functions are SH1, AH1, T5, L4, SR1, PL2, PPO, DCO, DT1, CO. Refer to IEEE Standard 488-1978. Switch selection between 2 modes as follows. TALKER-LISTENER MODE: Input command from system controller can disable keyboard and program all functions lexcept setting limits for sorting); any or all measurement results are avallable as outputs. TALKER-ONLY MODE: Measured results are always output, for use in systems without controllers. HANDLER INTERFACE PORT: 1 input (start signal), 2 output (status signals), and set of 10 output ines (sorting data), active low logic; for input, logic
low is 0.0 to +0.4 V (current is 0.4 mA max) and logic high is +2.4 to +5.0 V ; for outputs, open-collector drivers rated at +30 V max, 40 mA max (sink), each, this port only. (External power supply and pullup re. sistors are required.)
Environment: TEMPERATURE: 0 to $40^{\circ} \mathrm{C}$ operating, -40 to $+75^{\circ} \mathrm{C}$ storage. HUMIDITY: 0 to 85% R.H., operating.
Supplied: Power cord, axiallead adaptors, bias cable, instruction manual.
Line Vobkage and Power: 90 to 125 V or 180 to $250 \mathrm{~V}, 50$ to 60 Hz Either of these ranges selected by rear-panel switch. 30 w max.
Mechanical: Bench mounting, DIMENSIONS: (wxhxd): $375 \times 112 \times$ $343 \mathrm{~mm}(14.8 \times 4.4 \times 13.5 \mathrm{~m})$. WEIGHT: $6 \mathrm{~kg}(13.5 \mathrm{lb})$ net, 10 kg $(22 \mathrm{lb})$ shipping.

Description	Catalog Number,
1658 RLC Digibridge TM	
120 Hz and 1 kHz Test Frequencies	$1658-9700$
Same with Interface Option	1658.9701
100 Hz and 1 kHz Test Frequencies	16589800
Same with Interface Option	1658.9801
Exender Cable (for remote measurements)	1657.9600

Table of Contents

Condensed Oparating Instuctionsare on page 1.6.

Specifications
Warranty
Introduction ... Section ?
1.1 Purpose 1.1
1.2 General Description 1.1
1.2. 1 Basie Digibridge 1.1
$1,2.2$ Interface Option 4. 1
1.2,3 References 1.1
1.3 Controls, Indicators, and Connectors 1.4
1.4 Accessaries 1.1
Installation -. Section 2
2,1 Unpacking and Inspection 2
2,2 Dimensions 2.1
2.3 Power-Line Connection 2.1
2.4 Linew Voltage Regulation 2.2
2,5 Test-Fixture Connections 2.2
2.6 External Bias 2.2
2.7 Handlar Interface (Option) 2.3
2,8 IEEE.488 Interface (Option) 2.4
2.8,1 Purpose 2.4
2.8.2 Interface Functions 2.5
2.8.3 Signal Identificetion 2.5
2.8.4 Codes and Addresses 2.5
2.9 Envionment 2.9
Operation -me Section 3
3.1 Basic Procedure 3.1
3,2 Connection of DUT 3.2
3.2.1 The Integral Test Fixture 3.2
3.2.2 The Extender Cable 3.2
3,2,3 Correction for Cable Capacitancs 3.2
3.3 Accuracy and Speed 3-3
3.3.1 RLC Basic Accuracy 3.3
3.3.2 RLC Accuracy Factor 3.4
$3.3,3 \mathrm{D}$ and O Accurbey 3-4
3,3.4 Conveninnce of Logarithmic Scales 3.4
3,3.5 Insignificent Digits 3.4
3,3,6 Measurament fate 3.5
3.4 Test Frequency and Equivalent Circult 3.5
3.4.1 Genera 3.5
3,4,2 Rules 3.5
3,4,3 Series and Parallel Parameters 3.8
3.4.4 Equivalent Series R for Capacitors 3.6
3.4,5 Paralel Equivalent Circuits for Inductors 3.7
3.5 Parametar, Range Holding, and Mode 3.7
3.5.1 Parameter $-\cdots$ P, L, or C $3-7$
3.5.2 Ranges and Range Holding 3-7
3.5.3 Measurement Modes 3.8
3.6 Limit-Comparison Bins 3.9
3.6.1 Introduction 3.9
3.6.2 Limit Entry Methods 39
3,6.3 Limit Entry Procedure 39
3.6.4 Examples 3.10
3.6.5 Entries in General 3.11
3.6.6 Verification of Nominal and Limit Values $3 \cdot 11$
3,6.7 Displays $3-11$
3.7 Bias $3 \cdot 11$
3.7.1 Bias Less Than 30 V and C Less Than $1000 \mu \mathrm{~F}$ 3.12
3.7 .2 Bias Up to 60 V 3.12
3.8 Oparation with a Handlet $3 \cdot 12$
3.9 System Considerations $3 \cdot 12$
3.9 .1 IEEE-488 Interface Unused $3 \cdot 12$
3,9.2 Tak. Only Use 3.12
3.9.3 Tak/Listen Use $3 \cdot 12$
Theory ---Section 4
4,1 Introduction 4.
4.1.1 Genera 4. 1
4,1.2 Briet Description of the Digibridge 4.
4,1.3 Block Diagram 4.2
4.2 Primcipal Functions 4.2
4.2.1 Elementary Measurement Circuit 4.2
4,2.2 Frequency and Time Source 4.2
4.2 .3 Sinewave Generation 4.3
Service and Maintonance - Section 5
5. 1 Customer Service 5.1
5.2 Instrument Retum 5.1
5,2.1 Peturned Material Number 5.1
5.2.2 Packaging 5.1
5.3 Repair and Replacement of Circuit Boards 5.1
5.4 Performance Verfication $5 \cdot 2$
5.5 Minimum Performance Standards 5.2
5.5.1 General 5.2
5.5.2 Resistance Measurement Accuracy $5-4$
5.5.3 Single and Average Modes $5-5$
5.5.4 Capacitance Measurement Accuracy (Small C) $5 \cdot 5$
5.5.5 Limit Comparison Bins $5 \cdot 5$
5.5.6 Capacitance Measurement Accuracy (Large C) $5 \cdot 7$
5,5.7 D-Measurement Accuracy 5.7
5.5,8 Inductance Measurement Accuracy 5.9
5.5.9 Zero Capacitance 5.9
5.6 Disassembly and Access 5.9
5.6.1 Disassembly 5.9
5.6.2 Access 5.11
5,6.3 Raference Designationty $5 \cdot 11$
5,6,4 Pemoval of Multiplet Pin Packages $5-11$
5.7 Poriodic Maintenance 5.11
5.7 .1 Care of the Test Fixure 6.11
5.7.2 Carg of the Display Panel 5.12
5,8 Trouble Analysis 5.13
5.8.1 General $5 \cdot 13$
5.8 .2 Power Supply $5 \cdot 15$
5.8 .3 Sinewave Ganerator $5 \cdot 15$
5,3.4 Front End Amplitiers and Switches 5.17
5.8.5 Contmol Signal Checks 5-19
5.8.6 Digital Circuitry 5.21
Parts List and Diagrams - - Section 6
6.1 General 6.1
6.2 Referance Designations $6-1$
6.3 Diagrams 6.1
Figure 6-1. Front viow, Mechanical Parts 6.2
Figure 6-2. Rear view, Mechanical Parts 6 .2
Federal Manufacturers Code 6.4
Flgures 6-3.,.6.9. Analog and Control Board, MB 1658-4700, as follows:
Figure 6-3. Signal Sources Diagram $6 \cdot 5$
Figure 6.4. Complete Layout 6.6
Figure 6.5. Front End Diagram 6.7
Flgure 6.6. I.C Layout 68
Figure 6.7. Digital Center Diagram 6.9
Figure 6.8. Counter, Driver Diagram 6.11
Figura 6.8. Intertace Diagram 6.13
Figure 6.10. Display Board Layout 6.14
Figure 6.11. Display Board Disgram 6.15
Figure 6-12, Keyboard Mocula Assmbly 6.16
Figura 6-13. Keyboard Circuit Layout 6.17
Figure 6.14. Keyboard Circuit Diagram 6.17
Figute 6.15. Intertace Option Layout 6.18
Figure Gmis. Interface Option Diagram 6.19
Figure 6-17. Power Supply Board Layout 6.2
Figurg 6-18, Power Supply Diagram 6.21

Warranty

GenRad

We warrant that this product is free from defects in material and workmanship and, When properly used, will perform in accordance with applicable GenRad specifications. If within one year after original shipment it is found not to meet this standard, it will be repaired or, at the option of GenRad, replaced at no charge when returned to a GenRad service facility. Changes in the product not approved by GenRad shall void this warranty. Genfad shall not be liable for any indirect, special, or consequential damages, even if notice has been given of the possibility of such damages.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
GenRad policy is to maintain product repair capability for a period of ten years after original shipment and to make this capability avalable at the then preyalling schedule of charges.

Introduction-Section 1

1.1 PURPOSE $1-1$
1.2 GENERAL DESCRIPTION 11
1.3 CONTROLS, INDICATORS, AND CONNECTORS $1-1$
1.4 ACCESSORIES 1.1

1.1 PURPOSE.

The 1658 Digibridge (TM) is a digital impedance meter and limit comparator embodying use of a microprocessor and other LSI circuitry to provide convenience, speed, accuracy, and reliability at low cost. With the interface option, this Digibridge can control other equipment and respond to remote control.

The versatile built-in test fixture, lighted keyboard, and angled display panel make this Digibridge convenient to use. Measurement results are clearly shown with decimal points and units, which are automatically presented to assure correctness. Display resolution is 5 digits for R, C, and L (4 for D or O) and the basic accuracy is 0.1%.

Long-term accuracy and reliability are assured by the measurement system. It makes these accurate analog measurements over many decades of impedance without a single calibration or "trimming" adjustment (not even in original manufacture).

The built-in test fixture, with a pair of plug-in adaptors, receives any common component part (axial-lead or radiallead), so easily that insertion of the device under test (DUT) is a one-hand operation. Four-terminal (Kelvin) connections are made automatically, ungrounded, with guard at ground potential. An extender cable is available for measurements at a distance from the instrument, typically for bulky components.

Bias can be applied to capacitors being measured, by connection of an external voltage source and sliding a switch. Bias levels from 0 to 60 V are suitable.

The interface option provides full "talker/listener" and "talker only" capabilities consistent with the standard IEEE-488 Bus. [1] A separate connector also interfaces with component handling and sorting equipment.

1.2 GENERAL DESCRIPTION.

1.2.1 Basic Digibridge.

Convenience is enhanced by the arrangement of test fixture and controls on the front ledge, with all controls for manual operation arranged on a lighted keyboard. Above and behind them, the display panel is inclined and recessed to enhance visibility of digital readouts and indicators. These

[^1]indicators and those at the keyboard serve to inform and guide the operator as he manipulates the simple controls, or to indicate that remote control is in effect.

The instrument stands on a table or bench top. The study metal cabinet is durably finished, in keeping with the longlife circuitry inside. Glass-epoxy circuit boards interconnect and support high-quality components to assure years of dependable performance.

Adaptability to any common ac power line is assured by the removable power cord and the convenient line-voltage switch. Safety is enhanced by the fused, isolating power transformer and the 3 -wire connection.

1.2.2 Interface Option.

The interface option adds capabilities to the instrument, enabling it to control and respond to parts handling/sorting equipment. Also (via separate connector) this option can be connected in a measurement system using the IEEE-488 Bus. Either "talker/listener" or "talker only" roles can be performed by the Digibridge, by switch selection.

1.2.3 References.

A functional description is given in Theory, Section 4. Electrical and physical characteristics are listed in Specifications at the front of this manual; dimensions, in Installation, Section 2. Controls are described below; their use, in Operation, Section 3.

1.3 CONTROLS, INDICATORS, AND CONNECTORS.

Figure 1-1 shows the controls and indicators on the front of the instrument. Table 1-1 identifies them with descriptions and functions. Similarly, Figure $1-2$ shows the controls and connectors on the rear; Table $1-2$ identifies them.

1.4 ACCESSORIES.

GenRad makes several accessories that enhance the usefulness of this Digibridge. The extender cable facilitates making connection to those devices and impedance standards that do not readily fit the built-in test fixture. The cable branches into 5 parts, each with a stackable banana plug, for true 4 -terminal connections (and guard) to the device being measured, without appreciable reduction in measurement accuracy. Other useful accessories are offered, such

Figure 1-1. Front controls and displays. Upper, whole instrumem. Lower, keyboard, detall.

Table 1-1
FRONT CONTROLS AND INDICATORS
Figure 1-1

liem	Mame	Description	Function
1	RLC display	Digital display, 5 numerals with decimal points. Unit labels $M \Omega, k \Omega, \Omega, H, m H$, $n \mathrm{~F}, \mu \mathrm{~F}$, with 7 lights.	Display of primcipal measured value. Light spot indicates units.
2	OUT OF RANGE and RANGE HELD lights.	Legend with arrows and 3 lights.	Inclicates when measurement is OUT OF basic RANGE: underrange (left arrow), overrange (right arrow, or DUT not compatible with selected parameter (both arrows). For low underrange, neither arrow is lit. (However, if RLC display has less than 4 digits, the measurement was made on low underrange.) When RANGE HELD indicator is out, the range is automaticaly optimized.
3	DO display	Digital cisplay, A numerals with decimal points.	Display of secondary measured value, D if you select $\mathrm{C} / \mathrm{D}, \mathrm{Q}$ if you select L / Q or R / Q with item 17.
4	POWER switch	Pughbutton (push again to release).	Tums instrument ON when in, OFF when out. OF F position breaks both sides of power circuit.
5	Test fixture	Pair of special connectors; each makes dual contact with inserted wire lead of DUT.	Receives radiallead part, making 4-terminal connection automatically. Adaptors are supplied to make similar connection with axial-lead part.
6	BIAS light	Legend with light.	Light shines when bias is applied (via EXT BIAS switch, item 8).
7	REMOTECONTROL hight	Legend with light.	Iight shines when remote control is established by external command. Functions only if you have the interface option.
8	EXT BIAS switch	Slide switch, 2 positions: ON, OFF.	To connect and disconnect the external bias circuit. See item 6. Use an external switch routinely to apply bias and to discharge capacitors. Always leave OFF when bias circuit is not in use.
9	GO/NO-GO lights	LED indicator lighes	GO means measured value is acceptable, based on the limits stored by item 18. NO-GO means unacceptability of basic parameter, loss factor, or both.
10	START bution	Pushbutton swith.	Starts measurement sequence. (Normally used when measurement mode is either SINGLE or AVERAGE.)
$\begin{gathered} 11 \\ \vdots \\ 15 \end{gathered}$	(see below)	Each key has associated LED indicators at right.	Selection of indicated function, accomplished by pressing key repeatedty tcausing corresponding indicators to cycle through the alternatives) until desired choice is lit.
11	DISPLAY key	Indicators: VALUE, BIN NO., ENTER LIMTS.	Two choices enable measurement, with display senses as follows: VALUE $=$ measured parameters, BIN NO. = limit category into which value fits. When ENTER LIMTS is selected, measurements are inhibited, limit-entry kevs are enabled, and display is limits or nominal value, depending on use of item 18.
12	MEASURE RATE Key	Indicators: SLOW, MED, FAST	Seiection of measurement speed as indicated. (Accuracy is best with SLOW.)
13	EQUIVALENT CIRCUIT key	Indicators: SERIES, PAPALLEL.	Selection of equivalent circuit assumed for the DUT.
14	FREQUENCY key	Indicators: 120 Hz and 1 kHz (or $100 \mathrm{~Hz}, 1 \mathrm{kHz}$).	Selection of test-signal frequency.
15	MEASURE MODE key	Indicators: CONT, AVERAGE, SINGLE.	Mode selection: continuously repeating measurements, running average of 10 measurements and display held after the 10 th; single measurement (display held). Continuous mode does not require "start."

Table 1-1 (Cont.)
FRONT CONTROLS ANO INDICATORS

Figure 1-2. Rear controls and connectors.
as standards for checking the performance of the Digibridge. Refer to Table $1-3$ in this manual and the brochure of

Impedance Standards and Precision Bridges, available from GenRad upon request.

Table $1-2$
REAR CONNECTIONS ANO CONTROLS

Figure 1-2 Pef. No.	Name	Description	Fametion
1 R	BIAS INPUT connector	Recessed plug, 2-pin, Labeled: 60 V max. 4, - , (rear view).	Connection of external voltage source for biasing capacitors via uest fixture. Observe instructions in para 2.6.
2 R	TALK switch*	Toggle switch.	Selection of mode for IEEE-488 interface: TALK LISTEN or TALK ONLY, as labeled.
$3 R$	Power connector (labeled $50-60 \mathrm{~Hz}$)	Satety shrouded 3 wire plug, conforming to International Electrotechnical Commission 320.	Ac power input. Use appropriate power cord, with Belden SPH-386 socket or equivalent. The GenRad $4200-9625$ power cord (supplied) is rated for 125 V
4R	Fuse llabeled 250 V . 0.5 A, SLOW BLOW)	Fuse in extraction post holder.	Short circuit protection. Use Bussman vype MDL or equivalent fuse, $1 / 2 \mathrm{~A}, 250 \mathrm{~V}$ rating.
58	Line-voltage switch	Slide switch. Upper position, 90 to 125 V : lower position. 180 to 250 V .	Adapts power supply to line-voltage ranges, as indicated. To operate, use small screwdriver, not any sharp object.
6 P	HANDLERINTERFACE connector*	Socket, 24-pin; receives Amphenol "Microribbon" plug P/N 57-30240 for equivi.	Connections to component hander (bin numbers and status, out; "start", inl.
7R	IEEE-488 INTERFACE connector*	Socket, 24-pin. Receives IEEE-488 interface cable (see pare 2.8).	Input/output connections according to IEEE Sta 488-1978. Functions: complete remote control, output of all display values.

* TALK switch and 24 -pin connectors are suppled with the intertace Option only.

Table - 3
ACCESSORIES

Quantity	Description	Part Number
I supplied	Power cord, $210 \mathrm{~cm}(7$ fth long, 3-wire, AWG No. 18 , with molded connector bodies. One end, with Belden SPH-386 socket, fits instrument. Other end is stackable hammerhead conforming to ANSI standard C73.11-1966 (125 V max).	$4200-9625$
2 supplied	Test-fixture adaptors, for axiallead parts.	1686.1910
1 supplied	Bias cable, $120 \mathrm{~cm}(4$ ftlong, 2 wire. One end fits B1AS INPUT connector. Other end has stackable banama plugs (black, red).	16582450
1 supplied	Keyboard cover,	1687.2210
1 recommended	Extencer cable for connection to mult-terminal standards and large or remote DUT's. Length 100 cm (40 in .).	1657.9600
1 available	Rack mount kit (slides forward for complete access)	$1657-9000$

CONDENSED OPERATING INSTRUCTIONS

GenRad 1658 Digibridge ${ }^{\text {B }}$

1. GENERAL INFORMATION

Refer to instruction manual for details of specification, installation, operation, and service.

MEASUREMENT RANGES			
Parameter: Frequency	Minimum (Reduced Acc)	Basic Ranges, Full Accuracy	Meximum (Reduced Ace)
R; $120 \mathrm{~Hz}{ }^{*}$	0.0001Ω	2Ω to $2 \mathrm{M} \Omega$	99.999 Ms
R; 1 kHz	0.0001Ω	2Ω to $2 \mathrm{M} \Omega$	9.9999 Ms
O (with R)	. 0001	-----	9.999
L. 1 kHz	. 00001 mH	0.2 mH to 200 H	999.99 H
L: $120 \mathrm{~Hz}{ }^{\text {* }}$	0.0001 mH	2 mH to 2000 H	9999.9 H
Q (with L)	00.01	- - - ---	999.9
C; 1 kHz	. 00001 nF	0.2 nF to $200 \mu \mathrm{~F}$	$999.99 \mu \mathrm{~F}$
C; $120 \mathrm{Hz*}$	0.0001 nF	2 nF to $2000 \mu \mathrm{~F}$	$99999 \mu \mathrm{~F}$
D (with C)	. 0001	-----	9.999

* 120 Hz or 100 Hz , depending on model.

2. EXTENDER CABLE

Available from GenRad (P/N 1657-9600).
COLOR CODE OF EXTENDER CABLE

Colors	Signal	DUT	Digibridge
Red	$1+$	"High" end	Signal source (hi)
Red and white	$\mathrm{P}+$	"High" end	Potential sense (hi)
Black	-	Low" end	Current sense (lo)
Black and white	P-	Low" end	Potential sense (lo)
Black and green	GND	Shield onty	Guard

3. EXT BIAS SWITCH

Keep this switch OFF (regardless of whether any bias source is connected) for all measurements except when applying de bias to capacitors. (Refer to manual, para 3.7.)

4. OPERATION

a. Select VALUE mode with [DISPLAY] key.
b. Select measurement conditions with keys at right. Repeat keying advances selection as indicated nearby.
c. With [HOLD RANGE] key, select autorange (no indication) or RANGE HELD (indicator on panel).
d. Select parameter with $R / Q, L / Q$, or C/D key; note confirmation by type of unit, on panel. (Repeat keying has no effect except in entry mode; see para 6.)
e. Refer to manual for detalls of test fixture connections. Keep EXT BIAS switch generally OFF (see above).
f. Use START button for AVERAGE or SINGLE MEASURE MODE.
g. Read RLC and DO displays. Observe range lights:

*Select autorange (avoid RANGE HELD\} to obtain best available accuracy and minimize the number of under- and over-range measurements.
h. If limits have been entered and enabled (para 6), observe GO/NO-GO lights.
3. If limits have been entered and enabled (para 6), to see display of bin number instead of measured values, use [DISPLAY] key to select BIN No. and remeasure the DUT.
5. INTERFACE OPTION, USE OF IEEE-488 BUS

Set the TALK switch (rear panel) as follows:
TALK ONLY - whenever bus is not in use and while communicating only with "listen-only" devices.

TALK/LISTEN - to enable use in a system with a controller device, e.g., calculator. Refer to table below for device-dependent messages to control Digibridge.

PROGRAMMING COMMANDS

Command	Code	Command Cos	Code	Command	Code
Display		Measure mode		Data output**	
Entry*	D0	Single	10	None	$\times \emptyset$
Bin	D1	Average	$L 1$	Bin number	$\times 1$
Value	O2	Contmuous	12	DQ	$\times 2$
Neasurement rate		Parameter		DO, bin no.	$\times 3$
Fast	S0	L/a	M0	RLC	$\times 4$
Medium	51	C / D	M	RLC, bin no.	$\times 5$
Slow	S2	P / Q	M2	PLC, DQ	$\times 6$
Equivalent circuit		Range control		RLC, DO, bin	$\times 7$
Parallel	CO	Hold range	RO	Initiation	
Series	C 1	Hold mg 1	R1	Start***	60
Frequency		Holdrng 2	P2	Manual start	
$120 \mathrm{~Hz}(100)$	$F 0$	Hold rng 3	P3	Enable switch	ED
1 kHz	F1	Autorange	R4	Disable sw	E1

* Enables entry of bin limits, which must be entered via keyboard.
* Must be specified before initiation of measurement.
** An alternative command is given in manual.

6. ENTRY MODE

Entry-mode keys (left rear block of 16 keys) are effective only when selected DISPLAY is ENTER LIMITS.

LIMIT ENTRY PROCEDURE	DISPLAY
With [FREQUENCY] select:	$120 \mathrm{~Hz}(100 \mathrm{~Hz})$ or 1 kHz
With [DISPLAY] select:	ENTER LIMITS.
Use [R/Q] [L/Q] or [C/D] to	MS, $\mathrm{k} \Omega, \Omega, \mathrm{H}, \mathrm{mH}, \mathrm{nF}$,
select units by repeat keying	or $\mu \mathrm{F}$,
(X) [=] [BIN No.] [O]	(X) in DQ display area;
(X is the desired DQ limit)*	max 4 digits and dec pt.
(Y) [=] [NOM VALUE]	(Y) in RLC display area;
(Y = number; above units)	max 5 digits and dec pt.
(S) [\%] [=] [BIN No. (Z)	Upper limit in RLC area,
(for symmetrical limit pair)	lower limit in DQ area,

(S is number up to 100 (00)*
$(Z$ is $1,2,3, \ldots 8)$.
(H) $[\%][-](\mathrm{L})[\%][=]$
[BIN No.] (Z) (for unsym-
metrical limit pair)
(H is number up to 10000)*
(L is number up to 100.00 .)*
To change nom val, reenter.**
To change bin limits, reenter.
To close a bin, use zero for S.
To see, press [NOM VALUE]
To see, key in [BIN No.] (Z)
Inhibit: [0] [=] [NOM VALUE]
Enable: $(Y)[=]$ [NOM VALUE]
(Y) in RLC display area.
Both limit values. Identical limit values. (Y) in RLC display area. Limit values (as above). 0 in RLC display area. (Y) in RLC display area.

BIN No.	GENERAL ASSIGNMENT
Bin 0	DQ failure
Bin 1	RLC pass, tightest tolerance
Bin 2	RLC pass, next looser tolerance
	(progressively looser tolerances)
Bin 8	RLC pass, last available bin
Bin 9	RLC fail (default bin)

*Use numerical and decimal-point keys in sequence to enter number; max of 5 digits and decimal pt valid, even if display is limited to 4.
**New nominal value does not affect bins already set up.
To resume operation using limits entered as above, press [DISPLAY] key (see para 4); do not change frequency.

Installation-Section 2

2.1 UNPACKING AND INSPECTION 2-1
2.2 DIMENSIONS 2-1
2.3 POWER-LINE CONNECTION 2-1
2.4 LINE-VOLTAGE REGULATION 2-2
2.5 TEST-FIXTURE CONNECTIONS $2-2$
2.6 EXTERNAL BIAS 2.2
2.7 HANDLER INTERFACE (OPTION) 2.3
2.8 IEEE-488 INTERFACE (OPTION) 2-4
2.9 ENVIRONMENT 2-8

2.1 UNPACKING AND INSPECTION.

If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage (scratches, dents, broken parts, etc.). If the instrument is damaged or fails to meet specifications, notify the carrier and the nearest GenRad field office. (See list at back of this manual.) Retain the shipping carton and the padding material for the carrier's inspection.

2.2 DIMENSIONS.

Figure 2-1.
The instrument is supplied in a bench configuration, i.e., in a cabinet with resilient feet for placement on a table. The overall dimensions are given in the figure.

2.3 POWER-LINE CONNECTION.

The power transformer primary windings can be switched, by means of the line voltage switch on the rear panel, to accommodate ac line voltages in either of 2 ranges, as labeled, at a frequency of 50 or 60 Hz , nominal. Using a small screwdriver, set this switch to match the measured voltage of your power line.

If your line voltage is in the lower range, connect the 3 -wire power cable (P/N 4200-9625) to the power connector on the rear panel (Figure 1-2) and then to the power line.

The instrument is fitted with a power connector that is in conformance with the International Electrotechnical Commission publication 320. The 3 flat contacts are surrounded by a cylindrical plastic shroud that reduces the possibility of electrical shock whenever the power cord is being unplugged from the instrument. In addition, the center ground pin is longer, which means that it mates first and disconnects last, for user protection. This panel connector is a standard 3-pin grounding-type receptacle, the design of which has been accepted world wide for electronic instrumentation. The connector is rated for 250 V at 6 A . The receptacle accepts power cords fitted with the Belden type SPH-386 connector.

The associated power cord for use with that receptacle, for line voltages up to 125 V , is GenRad part no. 4200-9625. It is a $210-\mathrm{cm}(7 \mathrm{ft}), 3$-wire, 18 -gage cable with connector bodies molded integrally with the jacket. The connector at the power-line end is a stackable hammerhead design that conforms to the "Standard for Grounding Type Attachment Plug Caps and Receptacles," ANSI C73.11-1966, which specifies limits of 125 V and 15 A . This power cord is listed by Underwriters Laboratories, Inc., for $125 \mathrm{~V}, 10 \mathrm{~A}$.

If the fuse must be replaced, be sure to use a "slow blow" fuse of the current and voltage ratings shown on the rear panel, regardless of the line voltage.

Figure 2-1. Overall dimensions

If your Ine voltage is in the higher range selectable by the line voltage switch, use a power cord of the proper rating $(250 \mathrm{~V}, 15 \mathrm{~A})$ that mates with both instrument and your receptacie. It is possible to replace the "hammerhead" connector on the power cord that is supplied with a suitable connector. Be sure to use one that is approved for 250 V , 15 A. A typical configuration is shown in Figure 2-2.

2.4 LINEVOLTAGE REGULATION.

The accuracy of measurements accomplished with precision electronic test equipment operated from ac line sources can often be seriously degraded by fluctuations in primary input power. Line-voltage varlations of $\pm 15 \%$ are commonly encountered, even in laboratory environments. Although most modem electronic instruments incorporate some degree of regulation, possible power-source problems should be considered for every instrumentation setup. The use of linevoltage regulators between power lines and the test equipment is recommended as the only sure way to rule out the effects on measurement data of variations in line voltage.

2.5 TEST-FIXTURE CONNECTIONS.

Because an unusually versatile test fixture is provided on the front shelf of the instrument, no test-fixture connection is generally required. Simply plug the device to be measured (DUT) into the test fixture, with or without its adaptors. For detalls, refer to para 3.2.

The accessory extender cable $1657-9600$ is needed to connect to a DUT that is multiterminal, physically large, or otherwise unsuited for the built-in test fixture. (Refer to Table 1-3.) This cable is needed also to connect impedance standards for
accuracy checks. Use the following procedure to install the extender cable on the instrument.
a. Pemove the adaptors, if present, from the test fixture.
(See para 3.1.)
b. Plug the single-connector end of the extender cable into the test fixture, so that its blades enter both slots. Then lock the connector with the 2 captive thumb screws (which also provide a ground connection).
c. Notice the color coding of the 5 banana plugs. (It is
"current source"; 1 - is "current sense"; both P are "potential sense".)
$1+=\mathrm{RED} \quad \mathrm{Pt}=\mathrm{RED} / \mathrm{WHITE}$ Guard = BLACK/GREEN $1-=$ BLACK $P-=$ BLACK WHITE

2.6 EXTERNAL BIAS

WARNING

- Maximum bias voltage is 60 V . Do NOT exceed.
- Bias voltage is present at connectors, test fixtures, and on capacitors under test.
- Capacitors remain charged after measurement.
- Do not leave instrument unattended with bias applied.

Full bias voltage appears on test leads, bias-voltagesource terminals, and on the leads of the DUT. Capacitors that have been measured with bias applied can be dangerous until properly discharged, if several of them become connected in series by chance contact. For safety, all personnel operating the instrument with bias must be aware of the hazards, follow safe procedures, and remove bias before leaving the equipment unattended. Refer to para 3.7.

Figure 2-2 Contiguration of 250.41 . A plug. Dimensions in mum. This is Histed as NEMA 6-15p. Use for example Hubbell plug number 5666 .

In order to measure a capacitor with de bias voltage applied, connect an external voltage source as follows.
a. Plug the bias cable, supplied, into the BIAS connector, at the rear. Be sure to orient the plug so that the red-tipped wire connects to the + pin. (Refer to the label at the BIAS connector.)
b. Connect the black and red tips to the external bias supply - and + terminals, respectively. The bias voltage source must satisfy several criteria:

1. Supply the desired terminal voltage (dc).
2. Serve as source for charging current; but have current limiting, set to 200 mA .
3. Serve as source and sink for the measuring current (ac), which is 50 mA peak.
4. Present a low, linear terminal impedance $(\ll 10 \Omega)$ at measuring frequency.

If the bias voltage source is a regulated power supply with the usual characteristic that it functions properly only as a source, not a sink, then the following test setup is recommended. Connect across the power supply a bleeder resistor that draws de current at least as great as the peak measuring current (50 mA). In parallel with the bleeder, connect a $100-\mu \mathrm{F}$ capacitor. (If the power supply has exceptionally good transient response, the capacitor is not necessary.)

No single bleeder resistor will suffice for all bias conditions; so it may be necessary to switch among several. Each resistance must be small enough to keep the power supply regulator current unidirectional (as mentioned above) for the smallest bias voltage in its range of usefumess. Also, the resistance and dissipation capacity must be large enough so that neither the power supply is overloaded nor the resistor itself danaged, for the highest bias voltage in its range of application.

NOTE

For convenience, a suitable active current sink can be used in lieu of bleeder resistors.

A discharge circuit is also required. (Do not depend on the switch on the Digibridge, nor on the above-mentioned bleeder resistor.) If more than 30 V is sometimes used, a dual discharge circuit is recommended, as follows. One to be used first) should have a $10-\Omega$ resistor in series; the other (as a backup) should make a direct connection across the bias circuit.

If the measurement program warrants the expense of a remote test fixture (perhaps in conjunction with a handler), for biased capacitor measurements, it should be provided with the kind of circuit described above. It should have convenient switching to remove the bias source, to discharge through 10Ω, and finally to short out the capacitor after measurement. For automated test setups, it is also teasible to precharge the capacitors before attachment to the test fixture and to discharge them after they have been removed.

The equipment should be designed to safeguard personnel from electrical shock and adjusted to avoid the passage of large transient currents through the test fixture.

27 HANDLER INTERFACE IOPTION).

If you have the interface option, connect from the HANDLEP INTERFACE on the rear panel to a handler, printer, or other suitable peripheral equipment as follows. The presence of the 24 -pin comectors shown in Figure 1.2 verifies the interface option.) Refer to Table 1-2 for the appropriate connector. Refer to Table $2-1$ for the key to signal names, functions, and pin numbers.

As indicated in the Specifications at the front of this manual, the output signals come from open-collector drivers that pull each signal line to a low voltage when that signal is active and let it float when inactive. Each external circuit must be powered by a positive voltage, up to 30 V (max), with sufficient impedance to limit the active-signal (logic low) current to 40 mA (max).

CAUTION

Provide protection from voltage spikes over 30 V .

The cautionary note above means typically that each relay or other inductive load requires a rectifier across it (cathode connected to the power-supply end of the loadl.

The input signal is also active low and also requires a positive-voltage external circuit, which must pull the signal line down below +0.4 V , but not less than 0.0 V (i.e., not negativel. The logic-low current is $0.4 \mathrm{~mA}(\mathrm{max})$. For the inactive state (logichigh), the external circuit must pull the signal line above +2.4 V but not above +5.0 V .

Table 2-1
HANDLERINTERFACEKEY

Signal Name	Pin No.	Function (All signals "active low")
	5.6 .7	Ground comnection,
	10	Plus 5 V , if internal jumper in place. Himis current to 250 mA. 1
		INPUT:
STAPT	1	Initiates measurament (single or avg). outputs:
EOT	18	"End of test"; bin signals are valich.
ACOOVEP	22	"Data acquisiton over"; DUT removal OK.
Bino	15	No-go because of O or a limit.
Bld	17	Co, bin 1.
PIN 2	18	Go, bin 2.
BIM 3	21	Co, bin 3 .
BIN 4	23	Go.bin 4.
B105	14	Go, bin 5.
Bin 6	16	G0, bin 6 .
Bin 7	20	60, bin 7.
BIN8	24	Go, bin s .
Bing	13	No-go by defautt (suits no other bini.

Refer to Figure 2-2A for timing guidelines. Notice that START must have a duration of $1 \mu \mathrm{~s}$ (minimum) in each state (high and low). If START is provided by a mechanical switch without debounce circuitry, the Digibridge will make many false starts; but these will not cause extraneous testresult signals if START is made to settle down (low) within

Figure 2-2A. Handler interface timing diagram. External circuitry must keep $a \cdot b>1 \mu \mathrm{~s}, \mathrm{~b}-\mathrm{a}>1 \mu \mathrm{~s}$, and (if START is not "debounced") a-c $<20 \mathrm{~ms}$. The DUT can be disconnected after "e." The selected "BIN" line goes low at "f"; the others stay
high. Refer to Table 2-1A for the values of ACQ OVER and EOT.

20 ms (maximum) of the first transition to high. After completion of the measurement, ACQ OVER goes low, indicating that the DUT can be changed. Then after 10 to 50 ms , measurement results are available for sorting, i.e., one of the BIN lines goes low. A few microseconds later, EOT goes low (can be used to set a latch holding the bin assignment). ACQ OVER, the selected BIN line, and EOT then stay low until the next start command.

Be sure the TALK switch is set to TALK ONLY, if the IEEE-488 bus is not used.

2.8 IEEE-488 INTERFACE (OPTION).

2.8.1 Purpose.

Figure 2-3.
If you have the interface option, you can connect this instrument into a system (containing a number of devices such as instruments, apparatus, peripheral devices, and generally a controller or computer) in which each component meets IEEE Standard 488-1978, Standard Digital Interface for Programmable Instrumentation. A complete understanding of this Standard (about 80 pages) is necessary to understand in detail the purposes of the signals at the IEEE. 488 INTERFACE connector at the rear panel of this instrument. Commendable introductions to the Standard and its application have been published separately, for example: "Standard Instrument Interface Simplifies System Design", by Ricci and Nelson, Electronics, Vol 47, No. 23, November 14, 1974.

NOTE
For copies of the Standard, order "IEEE Std 488-1978, IEEE Standard Digital Interface for Programmable Instrumentation", from IEEE Service Center, Department PB-8, 445 Hoes Lane, Piscataway, N. J. 08854.

Table 2-1A
HANDLER INTERFACE TIMING DATA
Time from START signal to

Test Frequency	Line Frequency	Measurement Speed	ACO OVER	EOT
1 kHz	50 Hz	FAST	160 ms	185 ms
		MEDIUM	335	370
		SLOW	635	660
1 kHz	60 Hz	FAST	145 ms	170 ms
		MEDIUM	310	335
		SLOW	585	610
120 Hz	60 Hz	FAST	240 ms	265 ms
		MEDIUM	400	425
		SLOW	660	685
100 Hz	50 Hz	FAST	255 ms	280 ms
		MEDIUM	425	450
		SLOW	710	735

Each device is connected to a system bus, in parallel, usually by the use of several stackable cables. Refer to the figure for a hypothetical system. A full set of connections is 24 (16 signals plus shield and ground returns), as tabulated below and also in the Standard. Suitable cables, stackable at each end, are available from Component Manufacturing Service, Inc., West Bridgewater, MA 02379; U.S.A. (Their part number 2024/1 is for a 1 -meter-long cable.)

This instrument will function as either a TALK/LISTEN or a TALK ONLY device in the system, depending on the position of the TALK switch. "TALK/LISTEN" denotes full programmability and is suited for use in a system that has a controller or computer to manage the data flow. The "handshake" routine assures the active talker proceeds slowly enough for the slowest listener that is active, but is not limited by any inactive (unaddressed) listener. TALK ONLY is suited to a simpler system - e.g. Digibridge and printer with no controller and no other talker. Either mode provides measurement results to the active listeners in the system.

2.8.2 Interface Functions.

The following functions are implemented. Refer to the Standard for an explanation of the function subsets, represented by the identifications below. For example, T5 represents the most complete set of talker capabilities, whereas PPO means the absence of a capability.

SH1, source handshake (talker)
AH1, acceptor handshake (listener)
T5, talker (full capability, serial poll)
L4, listener (but not listen-only)

SR1, service request (request by device for service from controller)
RL2, remote control (no local lockout, no return-to-local switch)
PPO, no parallel poll
DCO, no device clear
DT1, device trigger (typically starts measurement)
CO, no controller functions.
The handshake cycle is the process whereby digital signals effect the transfer of each data byte by means of status and control signals. The cycle assures, for example, that the data byte has settled and all listeners are ready before the talker signals "data valid". Similarly, it assures that all listeners have accepted the byte before the talker signals "data not valid" and makes the transition to another byte. Three signal lines are involved, in addition to the 8 that convey the byte itself. Refer to Figure 2-4.

2.8.3 Signal Identification.

Refer to Table 2-2 for a key to signal names, functions, and pin numbers. Further explanation is found in the Standard. The first 3 signals listed take part in the "handshake" routine, used for any multiline message via the data bus; the next 5 are used to manage the flow of information; the last 8 constitute the multiline message data bus.

2.8.4 Codes and Addresses.

The device-dependent messages, such as instrument programming commands and measurement data (which the digital interface exists to facilitate), have to be coded in a way that

Figure 2-3. Block diagram of a generalized system interconnected by the 16 -signal-line bus specified in the IEEE Standard 488, Reprinted from Electronics, November 14, 1974; copyright McGraw-Hill, Inc., 1974.

Table 22
IEEE-48B INTERFACEKEY

PinNo.	Signal Name	Function or Significance
6	DAV	Low state: "data is avalabies" and valid on the Dl01.. Dios lines.
7	NPFPD	Low state; at least Pl listener on the bus is "not ready for data."
8	NDAC	Low state: at least one listener on the bus is "not done accepting data."
11	ATN	"Atention", specifies 1 of 2 uses for the Dl0 . . Dlo8 lines, as follows. Low state: controler command mossages. High state: data bytes from the alker device.
9	$1 F C$	"Interface clear." Low state: returns portions of interface system to a known quiescent state.
10	SPa	"Service request." Low state: a talker or listener signals to the controllen need for attention in the midst of the currant sequence of events.
17	REN	"Pemote enable." Low state: enables each device to enter remote mode when addressed to listen; PRemokecontrol commands are conveyed while ATM ishigh. High state: all devices revert to local control.
5	EOH	"End or ldentry." "END" if ATN is in high state, then, low state of EOl indicates end of a multiple-byte data transfer sequence." "loy" if ATN is in low state; then, low state of EOt activates a parallel pol., *
1	0107	The 8 -line data bus, which conveys interface
2	D102	messages (ATN low state) or device-dependent
3	D103	messages (ATN high statel, such as .
4	0104	remotecomtrol commands from the controller or
13	D105	from a talker device.
14	D106	
15	D107	
16	D108	

*"END" is typicaty sent concurnenty with the celtmber "Hneteed" character that terminates the stimgts) of cata output from the

Figure 2-4, The handshake proness, ilhustrated by thmog dagrams of the pertinemt signals for a systom whth one halker and several listencrs. Far deails, refer to the Standard.

Table 2-3 INSTRUMENT PROGRAM COMMANDS

Category	Selection	Command
Display	Enter limits*	D0
	Bin	D1
	Value	D2
Measurement rate	Fast	so
	Medium	S1
	Slow	S2
Equivalent circuit	Parallel	CO
	Series	C1
Frequency	120 (100) Hz	Fo
	1 kHz	Fi
Measurement mode	Single	10
	Average	L1
	Continuous	L2
Range control	Hold range	Ro
	Hold range 1	R1
	Hold range 2	R2
	Hold range 3	R3
	Auto-range	R4
Parameter	Inductance (L/Q)	MO
	Capacitance (C/D)	M
	Resistance (R/Q)	M2
Data output**	None	$\times 0$
	Bin number	$\times 1$
	DO	$\times 2$
	DQ, bin number	$\times 3$
	RLC	$\times 4$
	RLC, bin number	$\times 5$
	RLC, DO	$\times 6$
	RLC, OQ, bin no.	$\times 7$
Initiation***	Start	GO
START switch	Enable	EO
	Disable	E1

[^2]is compatible between talkers and listeners. They have to use the same language. Addresses have to be assigned, except in the case of a single "talker only" with one or more "listeners" always listening. The Standard sets ground rules for these codes and addresses.

In this instrument, codes for input and output data have been chosen in accordance with the rules. The address (for both talker and listener functions) is user selectable, as explained below.

Instrument Program Commands. Refer to Table 2-3. This input data code is a set of commands to which the instrument will respond as a "talker/listener", after being set to a remote code and addressed to listen to device-dependent command strings.

Notice that the set includes all the keyboard functions except entry of limits, which are not remotely programmable. Also, some of the remote-control commands have no manualcontrol equivalents. Range control includes the option of selecting specific ranges. Data output commands enable selection of specific classes of measurement results, independently from the actual displays.

Each command is 2 bytes; each byte is coded according to the 7 -bit ASCII code, [1] using the DIO1 . . DIO7 lines. The most significant bit is Dl07, as recommended by the Standard. Thus, for example, the command for " $1-\mathrm{kHz}$ test frequency" is F1, having octal code 106061 . The 7 -bit binary bytes are therefore: 1000110 and 0110001 . The ASCII code can be written out as follows. For the numerals $0,1,2 \ldots 9$, write the series of octal numbers 060,061 , $062 \ldots 071$; for the alphabet $A, B, C \ldots 2$, write the series 101, 102, 103 .. 132. Refer also to the table in the paragraph about "Address", below. The ASCll code conforms to the 7 -bit code ISO 646 used internationally.) Notice that the 8 th bit (DIO8) is ignored.

Address. The initial setting of address, provided by the factory, is binary 00011 . Consequently, the talk-address command (MTA) is C in ASCII code and, similarly, the listen-address command (MLA) is \#. If a different address pair is desired, set it manually using the following procedure.

WARNING

> Because of shock hazard and presence of electronic devices subject to damage by static electricity (conveyed by hands or tools), disassembly is strictly a "service" procedure.
a. Take the instrument to a qualified electronic technician who has the necessary equipment; refer to para 5.6. Have him remove the interface option assembly, as described in that paragraph. There is no need to remove the top cover first.)
b. Have him set the switches in "DiP" switch assembly $S 2$ to the desired address, which is a 5 -bit binary number. (Refer to the comments below.)
c. Have him replace the interface option assembly in its former place.

Notice that S 2 is located at the end of the interface option board, about 3 cm (1 in.) from the TALK switch S1. If S2 is covered, IIft the cover off, exposing the "DIP" switch, which has 2 rows of 6 tiny square pads with numbers $1 \ldots 6$ between the rows. To enter logical 1's, depress pads nearest the end of the board. To enter logical 0's, depress pads on the other side of the "DIP" switch, the side marked with a + sign. The address is read from 5 to 1 (not using 6). Thus,

[^3]Table 2-4
ADDPESS PAIRS AND SETTINGSFOR SWITCH S2

Talk address				Listen address				Switch setting*				
	bo		Binary		bol		Binary	5	4	3	2	1
@	1	000	000	(space)	0	100	000	0	0	0	0	0
A	1	000	001	1	0	100	001	0	0	0	0	1
B	1	000	010	"	0	100	010	0	0	0	1	0
0	1	000	011	\#	0	100	011	0	0	0	1	1
D	1	000	100	\$	0	100	100	0	0	1	0	0
E	1	000	101	$\%$	0	100	101	0	0	1	0	1
F	1	000	110	8	0	100	110	0	0	1	1	0
G	1	000	111	,	0	100	111	0	0	1	1	1
H	1	001	000	1	0	101	000	0	1	0	0	0
1	1	00%	001	,	0	101	001	0	1	0	0	1
J	1	001	010	*	0	101	010	0	1	0	1	0
K	1	001	011	+	0	101	011	0	1	0	1	1
L	1	001	100	*	0	101	100	0	1	1	0	0
M	1	001	101	\cdots	0	101	101	0	1	1	0	1
N	1	00\%	110	.	0	101	110	0	1	1	1	0
0	1	001	111	/	0	101	111	0	1	1	1	1
p	1	010	000	0	0	110	000	1	0	0	0	0
Q	1	010	001	1	0	110	001	1	0	0	0	1
P	1	010	010	2	0	110	010	1	0	0	1	0
S	1	010	011	3	0	110	011	1	0	0	1	1
T	1	010	100	4	0	110	100	1	0	1	0	0
U	1	010	101	5	0	110	101	1	0	1	0	1
V	1	010	110	6	0	110	110	1	0	1	1	0
W	1	010	111	7	0	110	111	1	0	1	1	1
X	1	011	000	8	0	111	000	1	1	0	0	0
Y	1	0 H	001	9	0	11	001	1	1	0	0	1
2	1	011	010		0	111	010	1	1	0	1	0
1	1	011	011	;	0	111	011	1	1	0	1	1
δ	1	011	100	$<$	0	11	100	1	1	1	0	0
1	1	011	101	$=$	0	111	101	1	1	1	0	1
A		011	110	$>$	0	111	110	1	1	1	1	0

[^4]for example, to set up we address O0011, enter O's at positions $5,4,3$; enter 1 's at positions 2, 1. This makes the talk address "C" and the listen address "\#".) Stricty speaking. the address includes more; 52 determines only the devicedependent bits of the address. You cannot choose talk and listen addresses separately, only as a pair. The list of possible pairs is shown in Table 24.

In the above example, the remote message codes MLA and MTA are X0100011 and $\times 1000011$, respectively. Thus the listen address and the talk address are distinguished, alhough they contain the same set of device-dependent bits, which you set into S2.

Data Output. Data (results of measurements) are provided on the D101...Dl07 lines as serial strings of characters. Each character is a byte, coded according to the 7 bit ASCII code, as explained above. The alphanumeric characters used are appropriate to the data, for convenience in reading printouts. The character strings are always provided in the same sequence as that shown in Table 2-3; for example:
RLC value, DO vawe, bin number - if all 3 were selected (by the $\times 7$ command). The carriagereturn and line-feed characters at the end of each string provide a printer for example) with the basic commands to print each string on a separate line.

For example, if the measurement was .00325 k 2 (range 2), the character string for RLC value is:

U(space)R(space)kO(space)(space)0.00325(CR)(LF). If a dissipation-factor measurement was 2345 , the character String for DC value is:
(space)(space)D(6 spaces)0.2345(CR)(LF).
If the measurement falls into bin 9 , the character string for bin number is:

F(space)BIN(space) (space) $\mathrm{F}(\mathrm{CR}$)(LF).
The character string for RLC value has the length of 17 characters; for DQ value, 17 characters; for bin number, 10 characters - including spaces, carriage-retum, and Ine-feed characters. Refer to Tables $25,2-6$, and 27 for details.

Status. The Digibridge responds with a status byte when the bus is in the serial poll mode and the Digibridge is addressed to talk. The status is encoded as shown in Table $2-8$ and sent on the data lines DIO1...DIO8.

2.8.5 Programming Guidebines.

If the Digibridge is to be programmed (TALK switch set to TALK/LISTENI, keep the following suggestions in mind. 1. An "unlisten" command is required before measurement is possible.
2. If not addressed to talk, the Digibridge sends a service request (SRO low) when it has data ready to send.
3. Then SPO will not go false (high until the Digibridge has been addressed to talk or has been serially polied.

A typical program might include these features:

- Initial setup: with ATN true, "untalk, unlisten, my listen address (of Digibridge), my talk address (of CPU)"; then with ATN false, measurement conditions (Table 2-3).
- Measurement-enabling sequence, for example: untalk the Digibridge, send a GET, unlisten the Digibridge. - After CPU receives the SRQ, necessary enabling of data transfer: with ATN true, "untalk, unlisten, my listen address (of CPU), my talk address (of Digibridge)"; then ATN false.

2.9 ENVIRONMENT.

The Digibridge can be operated in nearly any environment that is comfortable for the operator. Keep the instrument and all connections to the parts under test away from electromagnetic fields that may interfere with measurements.

Refer to the Specifications at the front of this manual for temperature and humidity tolerances. To safeguard the instrument during storage or shipment, use protective packaging. Refer to Section 5.

Table 2-5
RLC-VALUE DATA OUTPUT FORMAT

Character sequence	Purpose	Allowed characters	Meaning
1	Status	(space)	Nomal operation
		U	Underrange
		0	Overrange
		W	Wrong parameter or other invalidity
2	Format	(space)	--
3	Parameter	R	Resistance
		L	Inductance
		c	Capacitance
4	Format	(space)	- -
5.6	Units	(space)0	Ohms
		kO	Kilohms
		MO	Megohms
		(space)H	Henries
		mH	Millihenries
		UF	Microfarads
		$n \mathrm{~F}$	Nanofarads
7,8	Format	(space)	--
9...15	Number	012345	Measured number, right justified in format field; like the RLC
		$6789 .$ (space)	display except the zero before the decimal point is explicitly provided and this number can be as long as 7 characters.
16	---	(CR)	The customary "carriage-return" and "line-feed" characters,
17	Delimiter	(LF)	end of string.

Table 2-6
DQ-VALUE DATA OUTPUT FORMAT

Character sequence	Purpose	Allowed characters	Meaning
1,2	Format	(space)	---
3	Parameter	$\begin{aligned} & \mathrm{D} \\ & \mathrm{Q} \end{aligned}$	Dissipation factor Quality factor
$4 \ldots 9$	Format	(space)	---
10... 15	Number	$\begin{aligned} & 012345 \\ & 6789 . \\ & \text { (space) } \end{aligned}$	Measured number, right justified in format field, ike the DO display except the zero before the decimal point is explicitly provided and this number can be as long as 6 characters.
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	Delimiter	$\begin{aligned} & (C R) \\ & (L F) \end{aligned}$	The customary "carriage-return" and "line-feed" characters, end of string.

Table 2.7
BIN-NUMBER DATA OUTPUT FORMAT

Character sequence	Parpose	Allowed characters	Meaning
1	Pass/fal	(space)	G0 bins 1...8)
		F	NO-GO (bin O or 9)
2	Format	(space)	---
3	Label	B	The word "BIN".
4		1	
5		N	
6.7	Format	(space)	-
8	Category	01234	Bin number assignment.
		56789	
9	---	$(C R)$	The customary "carriage-return" and "ine-feed" characters,
10	Delimiter	(LF)	end of string.

Table 2.8 STATUS CODE

Line
Significance of a "1" Significance of a "0"

D108

Pemote
Local
Request for service, ROS. This device asserted SRO.

Wrong parameter
Busy, measurement in process
Limits were tested.
RLC measured value is avaliable

DO measured value is available.

Binno. assignment is available.

No request by this Digibridge for service

Normal operation
Measurement completed
Limits were not tested.
RLC value is not available.

Da value is not avalable.

Bin-no, assignment is not available.

Operation-Section 3

3.1 BASIC PROGEDURE

For initial familiarization, follow this procedure carefully. After that, use this as a ready reference and refer to later paragraphs in Operation for details.

Refer also to the Operation Reference Information, found stored in a pocket under the instrument. Reach under the front edge and pull the card forward as far as it slides easily. After use, slide it back in the pocket, for protection.

CAUTION

Set the line voltage switch properly (rear panel) before connecting the power cord.
a. Before connecting the power cord, slide the line-voltage switch (rear panel) to the position that corresponds to your power-line voltage. Power must be nominally 50 or 60 Hz ac, in either range: 90 to 125 V or 180 to 250 V . Connect the power cord to the rear-panel connector, and then to your power line.

Power. Depress the POWER button so that it stays in the depressed position. (To turn the instrument off, push and release this button so that it remains in the released position.)
b. Connect a typical device, whose impedance is to be measured, as follows. This device under test is denoted DUT.)

NOTE

Clean the leads of the DUT if they are noticeably dirty, even though the test-fixture contacts will usually bite through a film of wax to provide adequate connections.

Radial-lead DUT. Insert the leads into the test-fixture slots as shown in Figure 1-1. For details of wire size and spacing limits, refer to para 3.2.

Axial-lead DUT,

Figure 3-1A.
Install the test-fixture adaptors, supplied, one in each slot of the test fixture, as shown in the accompanying figure.

Slide the adaptors together or apart so the body of the DUT will fit easily between them. Press the DUT down so that the leads enter the slots in the adaptors as far as they go easily. For details of wire size and DUT size limits, refer to para 3.2.

NOTE

To remove each adaptor, lift with a gentle tilt left or right. For a DUT with very short leads, it is important to orient each adaptor so its internal contacts (which are off center) are close to the DUT.
Any other DUT or test fixture. Use the accessory extender cable. Refer to para 3.2.
c. Choose the conditions of measurement. For the first 6 selections, below, the recommended choice is automatically provided when you switch the POWER ON. TTo obtain another choice, press the corresponding key in the keyboard as many times as necessary, watching the indicator lights.)

Display: VALUE
Measurement Rate: MEDIUM
Equivalent Circuit: SERIES
Frequency: 1 kHz
Measurement Mode: CONTINUOUS
Hold Range: NOT selected; autorange is indicated by having the RANGE HELD light out
External Bias switch: OFF
Talk switch: TALK ONLY (rear panel). [1]
Parameter. For resistance, press R/Q; for inductance, press L / Q; for capacitance, press C / D. The choice is confirmed by illumination of appropriate unit label in the PLC display.
d. Read the measurement on the main displays. The RLC display is the principal measurement, complete with decimal point and units which are indicated by the light spot behind $M \Omega, k \Omega, \Omega, H, m H, n F$, or F. [2] The DO display is D if the selected parameter is C / D; it is O if the selected parameter is L / Q or R / Q.

[^5]

Figure 3-1A, Use of the test fixture adaptors.

NOTE

The following actions or conditions will abort measurements in progress or prevent measurement.

1. Pressing any key listed in step c above except HOLD RANGE, will abort the current measurement.
2. If there is no proper IEEE-488 system connection and the TALK switch on the rear panel is switched to TALK/ LISTEN, continuous measurement is inhibited. If you have the Interface Option, generally keep this switch set to TALK ONLY.)

3.2 CONNECTION OF THE DUT.

3.2.1 The Integral Test Fixture.

The test fixture provided on the front ledge of the Digibridge provides convenient, reliable, guarded 4 -terminal connection to any common radiallead or axiallead component part.

The slots in the test fixture accommodate wires of any diameter from $0.25 \mathrm{~mm}(.01 \mathrm{in}$. AWG 30$)$ to $1 \mathrm{~mm}(.04 \mathrm{in}$, AWG 18), spaced from 6 to 98 mm apart (0.23 to 3.9 in .) or equivalent strip conductors. Each "radia!" wire must be at least 1 cm long (0.4 in .). The divider between the test slots contains a shield, at guard potential, with its edges exposed. The adaptors accommodate wires of any diameter up to $1.5 \mathrm{~mm}(.06 \mathrm{in}$., AWG 15). The body of the DUT that will fit between these adaptors can be 80 mm long and 44 mm diameter ($3.1 \times 1.7 \mathrm{in}$.) maximum. Each "axial" wire must be at least 3 mm long (0.12 in .).

For radial-lead parts, remove each adaptor from the test fixture by a gentle pull upward, made easier by tilting the adaptor left or right (never forward or back). For axial-lead parts, insert the adaptors, one in the left slot and the other in the right slot of the test fixture, by pushing vertically downward. Each adaptor can be slid left and right to match the length of DUT to be measured. Notice that the contacts inside the adaptor are off center; be sure to orient the adaptors so the contacts are close to the body of the DUT, especially if it has short or fragile leads.

Insert the DUT so one lead makes connection on the left side of the test fixture, the other lead on the right side. Insertion and removal are smooth, easy operations and connections are reliable if leads are reasonably clean and straight.

Be sure to remove any obvious dirt from leads before inserting them. The test-fixture contacts will wipe through a film of wax, but will become clogged and ineffectual if you are careless about cleanliness. Be sure the contact pair inside each half of the test fixture is held open by a single item ONLY, whether that is one lead of an axial-lead DUT or one adaptor. (Otherwise you will not obtain true "Kelvin" connections to the DUT.)

3.2.2 The Extender Cable.

Figure 3-1B.
The accessory extender cable described in Table $1-3$ is needed to connect any DUT that is multiterminal, physically large, or otherwise unsuited for the built-in test fixture. This cable is needed, for example, to connect impedance standards or a remote test fixture. Make connections as follows.
a. Remove the adaptors from the test fixture. Plug the extender cable into the basic test fixture and lock the connection with the 2 captive thumb screws.
b. Using the branched end of the cable, connect to the DUT with careful attention to the following color code. The cable tips are stackable banana plugs (adaptable with slip.on alligator clips, supplied). Notice that the 2 red tips must connect to the same end of the DUT. Connect both black and black/white tips to the other end.

EXTENDER CABLE COLOR CODE

> RED: I+, current connection to "high" end of DUT. RED \& WHITE; P+, potential connection to same. BLACK: I-, current connection to "low" end of DUT. BLACK \& WHITE; P-, potential connection to same. BLACK \& GREEN: G, guard connection to shield or case (if isolated from the preceding terminals). Do not connect G to the case of a capacitor if the case serves as (or is connected to) one of its 2 main terminals.

3.2.3 Correction for Cable Capacitance.

The extender cable adds capacitance in parallel with the DUT (because shielding of the leads is imperfect). The $1657-9600$ cable adds about 0.5 pF. Because the physical arrangement and spacing of the cable branches and connectors is significant, a correction should be determined for each measurement setup. The following procedure applies to connection with a precision 3 -terminal capacitor, GR 1404 or 1413 , for example.
a. Install an adaptor, GR 874-02, on each of the two coaxial connectors, L and H, of the capacitor.
b. Connect cable branch G to the ground post of the "low" terminal adaptor. With a clip lead or plain wire, connect this point to the ground post of the "high" adaptor.
c. Connect cable branch P - to the main post of the "low" adaptor and stack 1 - on top of P-.

Figure 3-18. Extender cable, attached to test fixture.
d. Similarly, connect P+, with It stacked on top of it, to the main post of the "high" adaptor.
e. Measure this total capacitance, the sum of the desired measurement and the cable capacitance, $\mathrm{Cx}+\mathrm{Cc}$.
f. Carefully lift the stacked pair of cable tips, $1+/ \mathrm{P}+$, from the "high" adaptor and hold them about $0.5 \mathrm{~cm}(1 / 4 \mathrm{in}$.) above the binding post where they were connected. DO NOT rearrange the cable branches or change their spacing more than is absolutely necessary to follow these directions. Hold the plastic tips (not the wires) and touch the guard (G) circuit firmly with a couple of fingers, to minimize the effect of capacitance in your body.
g. Measure the cable capacitance, Cc .
h. Subtract the result of step g from that of step e , to obtain the desired measurement, $C x$.

3.3 ACCUPACY AND SPEED.

The basic accuracy of this Digibridge is 0.1% of reading R, L, or C, over wide ranges of values, for suitable measurement conditions. Outside of these ranges and conditions,
accuracy drops off in known ways, which should be understood by the operator. For example, selection of a faster measurement rate leads to less accurate measurements. To facilitate choice of conditions (if optional) and determination of accuracy for any particular results, refer to the accuracy statement in the specifications at the front of this manual, as well as the following graphs.

3.3.1 RLC Basic Accuracy.

Figure 3-2.
This graph shows that the basic accuracy extends for 6 decades (for example 2Ω to $2 \mathrm{M} \Omega$), over the 3 basic ranges, In high overrange and low underrange, the best available accuracy rises a factor of 10 for each decade of impedance (45° lines on graph). If a range is "held", the basic accuracy is valid for only 2 decades, beyond which there are similar overrange conditions.

Measurement Rate. The same graph shows the effects of choosing rate. To obtain 0.1% accuracy, select SLOW MEAS. UREMENT RATE. Lower accuracies (higher percentage) are obtained at higher rates, as shown by the alternative scales at the left.

RLC Values at Indicated Frequencies
Figure 3-2. PLC basic accuracy as a percent of reading. Heavy lines (solid and dotted) represent auto-ranging (range not held). Lighter lines represent reduced-accuracy operation due to a range being held. Range 2 is dotted. Notice that L and C scales above graph are for 120 Hz (*equally valid for 100 Hz) and the 2 below graph are for 1 kHz . The DO accuracy factor (righthand scale) is the multiplier that, applied to the DQ basic accuracy, yields complete DO accuracy, for range extensions as well as the basic ranges. (Range extensions are all represented by slanted lines.)

This basic RLC accuracy is valid only for "pure" R, L, or C. For the effect of quadrature impedance, multiply each basic accuracy value by the RLC accuracy factor; see below.

3.3.2 RLC Accuracy Factor.

Figure 3-3.
This graph shows the effect of D (or Q) on the accuracy of R, L, and C measurements. Multiply the RLC basic accuracy by this factor. For example, suppose a resistor is measured at SLOW MEASUREMENT RATE to be 1.0Ω, with $Q=0.5$. The RLC basic accuracy is 0.2% and the RLC accuracy factor is 1.5; so the accuracy of the R measurement is 0.3%.

Figure 3-3. PLC accuracy factor (or cross term), as a function of D or O. Multiply the RLC basic accuracy by this factor to obain complete RLC accuracy. Notice that for nearly "pure" resistance or reactance, this factor is unity.

3.3.3 D and O Accuracy.

Figures 3-4, 3-5.
These graphs show the basic accuracy of each D and Q measurement directly for impedances in the basic ranges (the main, horizontal line in the RLC basic accuracy graph).
For the above-mentioned example $(\mathrm{Q}=0.5)$ the graph shows a basic accuracy of 0.25%. However, for any overrange or underrange measurement (45° lines on RLC basic accuracy graph), use the following correction factor.

DO Accuracy Factor. This factor is directly proportional to the RLC basic accuracy; refer to the scale at the right of that graph (above). For the above-mentioned example, the DO accuracy factor is 2 ; therefore, the O measurement accuracy is 0.5\%.

3.3.4 Convenience of Logarithmic Scales.

The logarithmic scales on these figures make it very easy to apply the accuracy factors visually. For example, suppose a capacitor is being measured on one of the basic ranges, with the SLOW measurement rate; and the D display is about 1. Figure $3-3$ shows that the C accuracy factor is about $1 / 3$ of a decade on the logarithmic scale. On Figure 3-2, find the heavy horizontal line and point to the basic C accuracy 10.1%) at the left. Now apply the C accuracy factor by moving the pointer up about 1/3 of a decade. The pointer now shows the corrected C accuracy, 0.2%.

3.3.5 Insignificant Digits.

One or more of the digits at the right end of the RLC and/or DQ displays may be insignificant. This is particularly

Figure 3-4. Q basic accuracy as a percent of reading. Each curve applies for one measurement rate, as labeled. For measurements on any of the range extensions, multiply by the DO accuraby factor, shown in Figure 3.2. A. O of resistors. B. Q of inductors.

Figure 3-5. D basic accuracy as a percent of reading (for capacitors). Each curve applies to one measurement rate, as labeled. For measurements on any of the range extensions, multiply by the DO accuracy lactor, shown in Figure 3-2.
true at the upper extension of a range. If there are more than one insignificant digits in a display, the least significant is typically noisy. That is, it will appear to flicker at random over a range of values and should be ignored.

For example, if you measure a $4-\mathrm{M} \Omega$ resistor, the display might ideally be $4.1234 \mathrm{M} \Omega$; but the one or two final digits
might be changing at random. This flickering is entrely normal. The specified accuracy ($\mathbf{0} .4 \%$) is the key to expected pertormance; in this example, the last 2 digits are insignificant and the last digit is quite unnecessary. Typically, one would record this measurement as $4.12 \mathrm{M} \Omega \pm .02 \mathrm{MR}$.

3.3.6 Measurement Rate.

Choose one of 3 rates with the MEASURE RATE key: SLOW, MEDIUM, or FAST. The continuous-mode rates are respectively about 2,3 , and 7 measurements per second. Pange changes introduce some delays. For details, refer to the following specifics.

For CONTINUOUS measurement mode, steady state, each measurement requires a base period of about 570,310 , or 145 ms, depending on whether the measurement rate is SLOW, MEDIUM, or FAST, respectively. To that base period, add approximately 25 ms (for test frequency $\$ \mathrm{kHz}$) or 100 ms (for 120 or 100 Hz) for startup following each press of the START button. If the Digibridge is autoranging and a given measurement is out of range, the next measurement reguires as much time as startup plus base period the same total as for SINGLE measurement initiated by STARTI. In AVERAGE measurement mode, the time required for an entire measurement sequence, initiated by START, is startup plus 10 base periods.

3.4 TEST FREOUENCY AND EOUIVALENT CIRCUIT.

3.4.1 General.

Except for very large values of the principal measurement, you can select either measurement frequency: 1 kHz or 120 (100) Hz . The lower frequency is required to measure above $10 \mathrm{M} \Omega, 1000 \mu \mathrm{~F}$, or 1000 H . There is no such restriction on the choice of equivalent circuit, although there are rules to follow, as explained below.

The value of the principal measurement $(R, L$, or $C)$ of a certain DUT depends on which of 2 equivalent circuits is chosen to represent it. (Many impedance measuring instruments provide no choice in the matter, but this one allows selection]. The more nearly "pure" the resistance or reactance, the more nearly identical are the "series" and "parallel" values. However, for D or Q near unity, the difference is substantial. Also, the principal measurement often depends on measurement frequency. The more nearly "pure" the resistance or reactance, the less is this dependence, However. for D or Q near unity and/or for measuring frequency near the self-resonant frequency of the DUT, this dependence is quite substantial. We first give general rules for selection of measurement parameters, then some of the theory.

3.4.2 Rules.

Specifications. The manufacturer or principal user of the DUT probably specifies how to measure it. Usually "series" is specified for C, L, and low values of R.) Select "parallel" or "series" and 1 kHz or $120 \mathrm{~Hz}(100 \mathrm{~Hz})$ according to the applicable specifications. If there are none known,
be sure to specify with your results whether they are "parallel" or "series" and what the measurement frequency was.

Resistors, below about $1 \mathrm{k} \Omega$: Series, $120 \mathrm{~Hz}(100 \mathrm{~Hz})$. Usually the specifications call for dc resistance, so select a low test frequency to minimize ac losses. Select "series" because the reactive component most likely to be present in a low resistance resistor is series inductance, which has no effect on the measurement of series R. If the Q is less than 0.1 , the measured R_{s} is probably very close to the do resistance.

Resistors, above about $1 \mathrm{k} \Omega$: Parallel, $120 \mathrm{~Hz}(100 \mathrm{~Hz})$. As explained above, select a low test frequency. Select "parallel" because the reactive component most likely to be present in a high-resistance resistor is shunt capacitance, which has no effect on the measurement of parallel R. If the Q is less than 0.1 , the measured $R p$ is probably very close to the dc resistance,

Capacitors below 2 nF : Series, 1 kHz . Unless otherwise specified or for special reasons, always select "series" for capacitors and inductors. This has traditionally been standard practice. Select a high measurement frequency for best accuracy.

Capacitors above $200 \mu F$: Series, $120 \mathrm{~Hz}(100 \mathrm{~Hz})$.
Select "series" for the reasons given above. Select a low measurement frequency for best accuracy and to enable measurement of capacitors larger than 1000 F .

Inductors below 2 mH : Series, 1 kHz . Select "series" as explained above. Select a high measurement frequency for best accuracy.

Inductors above 200 H : Series, $120 \mathrm{~Hz}(100 \mathrm{~Hz})$. Select "series" as explained before. Select a low measurement frequency for best accuracy and to enable measurement of inductors larger than 1000 H .

3.4.3 Series and Parallel Parameters.

Figure 3-6.
An impedance that is neither pure reactance nor a pure resistance can be represented at any specific frequency by either a series or a parallel combination of resistance and reactance. Keeping this concept in mind will be valuable in operation of the instrument and interpreting its measurements. The values of resistance and reactance used in the equivalent circuit depend on whether a series or parallel combination is used. The equivalent circuits are shown in the accompanying figure, together with useful equations relating them. Notice that the Digibridge measures only Rs, Ls, or Cs, if you select SERIES EQUIVALENT CIRCUIT. It measures only Rp, Lp, or Cp if you select PARALLEL.

3.4.4 Equivalent Series R for Capacitors.

The total loss of a capacitor can be expressed in several ways, including D and "ESR", which stands for "equivalent series resistance". To obtain ESR, one can measure directly; push the R/O parameter key and select SERIES EOUIVA. LENT CIRCUIT.

Both C and $E S R$ should be measured on the same range. If D is below 1 , depress the C / D key and measure $C s$ first,

Resistance and Inductance

$$
\begin{aligned}
& Z=R_{s}+j \omega L_{s} \quad Z=\frac{i \omega L_{p} R_{p}}{R_{p}+i \omega L_{p}} \quad Z=\frac{R_{p}+j Q^{2} \omega L_{p}}{1+Q^{2}} \\
& Q=\frac{1}{D} \quad Q=\frac{\omega L_{s}}{R_{s}} \quad Q=\frac{R_{p}}{\omega L_{p}} \\
& L_{s}=\frac{Q^{2}}{1+Q^{2}} L_{p} \quad L_{s}=\frac{1}{1+D^{2}} L_{p} \\
& L_{p}=\frac{1+Q^{2}}{Q^{2}} L_{s} \quad L_{p}=\left(1+D^{2}\right) L_{s} \\
& R_{s}=\frac{1}{1+Q^{2}} R_{p} \quad R_{p}=\left(1+Q^{2}\right) R_{s} \\
& R_{s}=\frac{\omega L_{s}}{Q} \quad R_{p}=Q \omega L_{p} \quad R_{p}=\frac{1}{G_{p}}
\end{aligned}
$$

Resistance and Capacitance

$$
\begin{aligned}
& Z=R_{s}+\frac{1}{j \omega C_{s}} \quad Z=\frac{R_{p}}{1+j \omega R_{p} C_{p}} \quad Z=\frac{D^{2} R_{p}+1 /\left(j \omega C_{p}\right)}{1+D^{2}} \\
& D=\frac{1}{Q} \quad D=\omega R_{s} C_{s} \quad D=\frac{1}{\omega R_{p} C_{p}} \\
& C_{s}=\left(1+D^{2}\right) C_{p} \quad C_{p}=\frac{1}{1+D^{2}} C_{s} \\
& R_{s}=\frac{D^{2}}{1+D^{2}} R_{p} \quad \quad R_{p}=\frac{1+D^{2}}{D^{2}} R_{s} \\
& R_{s}=\frac{D}{\omega C_{s}} \quad R_{p}=\frac{1}{\omega C_{p} D} \quad R_{p}=\frac{1}{G_{p}}
\end{aligned}
$$

select HOLD RANGE, depress the R/O key, and measure Rs. On the other hand, if D is above 1, measure Rs first, select HOLD RANGE, and then measure Cs.
"Equivalent series resistance" is larger than the actual resistance of the wire leads and foils that are physically in series with the heart of a capacitor, ESR includes also the effect of dielectric loss. Generally, measured ESR is closer to actual series resistance for capacitors with lower reactance (larger capacitance and/or higher test frequency).

3.4.5 Parallel Equivalent Circuits for Inductors.

Even though it is customary to measure series inductance of inductors, there are situations in which the parallel equivalent circuit better represents the physical device. At low frequencies, the significant loss mechanism is usually "ohmic" or "copper loss" in the wire; and the series circuit is appropriate If there is an iron core, at higher frequencies the significant loss mechanism may be "core loss" (related to eddy currents and hysteresis); and the parallel equivalent circuit is appropriate. Whether this is true at 1 kHz should be determined by an understanding of the DUT, but probably it is so if the following is true: that measurements of $L p$ at 1 kHz and at $120 \mathrm{~Hz}(100 \mathrm{~Hz})$ are more nearly in agreement than measurements of L s at the same 2 frequencies.

3.5 PARAMETER, RANGE HOLDING, AND MODE.

3.5.1 Parameter - R, L, or C.

The selection of the parameter to be measured is almost self-explanatory. Depress the appropriate button: R / Q, L/Q, or C/D to measure resistance, inductance, or capacitance. The instrument will tolerate, to some degree, a poor choice of parameter, but accuracy is thereby reduced. The readout will indicate a completely wrong choice, as explained below. Notice that the appearance of a device can be misleading. (For example, a faulty inductor can be essentially capacitive or resistive; a component part can be mislabeled or unlabeled.)

Incorrect choice of parameter, for the measured DUT, is best avoided by watching for indications such a simultaneous lighting of both OUT OF RANGE arrows or an extreme DO display. Refer to Table 3-1, which shows conditions of poor choice of parameter (sometimes useful) as well a wrong choice (measurement generally useless). Another possible indication of wrong choice of parameter is repeated autoranging between 2 ranges, with meaningless measurements being made in each (with or without a display). It is also possible to have a zero RLC display that results from trying to measure a very large L or small C, but erroneously selecting C/D or L / Q respectively.

3.5.2 Ranges and Pange Holding.

Descriptions of ranges, extensions, and subranges are explained below, Refer to the RLC basic accuracy graph (Fig. ure 3-2) for illustration.

Basic Ranges. The 3 basic ranges together cover the 6 decades of basic accuracy (such as 2Ω to $2 \mathrm{M} \Omega$). The 3 are distinguished as low, mid, high, in order of increasing parameter value or 1, 2, 3, in order of increasing impedance. Mid range is the same as range 2 .

Each basic range is slightly more than 2 decades wide, from an RLC display of $\emptyset 1900$, with an automatic decimal-point change between the decades, to 19999 . The symbol 0 represents a blanked zero. Initial zeroes to the left of the decimal point are always blanked out of the RLC display.)

Extensions. Each of the 3 ranges goes beyond its basic range, with both upper and lower range extensions (shown by lighter lines in the RLC basic accuracy graph]. Most of these extensions are seldom used because they overlap basic portions of other ranges.

Underrange. The "low" extension of each range goes from 01999 down to 00000 , with reduced accuracy. The low extension of each high and mid range has the decimal point unchanged from its position in the lower decade of the

Table 3-1
INDICATIONS OF PARAMETER MISMATCH TO DUT

Paramerer selected*	Indication	Significance	Correct parameter
P / Q	OUT OF RANGE, both arrows	Wrong parameter	C / D or L / C
1/0	OUT OF RANGE, both arrows	Wrong parameter	C/D or R / Q
c / D	OUT OF RANGE, both arrows	Wrong parameter	L/Q or R/O
P / Q	$\mathrm{Q}=1.001$ to 9.999	R accuracy reduced	(L/O or CID
	$\mathrm{O}=$ blank	Wrong parameter	L/Oorc/D
L/0	$\mathrm{Q}=00.01$ to 00.99	L accuracy reduced	(R)
	$\mathrm{a}=00.00$	Wrong parameter	R
C / D	$\mathrm{D}=1.001$ to 9.999	Caccuracy reduced	(P)
	$D=b i a n k$	Wrong parameter	R
R / Q	$R=$ blank, units changing	Wrong parameter	$\mathrm{C/D}$ or L / O

basic range. However, the low extension of the low range is displayed with the decimal one place rarther left than the basic low range, thus providing fine resolution for small values of RLC. If the measured value is small enough to reduce accuracy by a factor of 20 , the operator is alerted by the reduced number of digits displayed. (For example, an RLC display of 0.0999 , having only 3 significant digits, is recognizable in this way.)

Overrange. The "high" extension of each range is a factor of 5 (with 2 exceptions), going from 19999 up to 99999 , and finally to blank, without any change in decimal point, but with reduced accuracy. The high overrange (above 2 Ma for example) is always used for the very large values of RLC that exceed the basic high range. The operator is alerted to the accuracy reduction by seeing the right-hand OUT OF RANGE arrow lighted, the "overrange indication."

The high overrange for R and C only, at $120 \mathrm{~Hz}(100 \mathrm{~Hz})$ only, is a factor of 50 , going from 19999, with an automatic decimal-point change, up to 99999, and finally to blank, with reduced accuracy. For high overrange, there is an overrange indication, as described above.

Subranges. Each range includes 2 or 3 subranges, distinguished by the automatic decimal-point shift. The operator can NOT control them. Subranges are detailed in Table 3-2. Notice, for example, on C, 1 kHz , RANGE 1 , there are 2 subranges: $19-\mu \mathrm{F}$ and $999 \mu \mathrm{~F}$. If a series of measurements is made with C increasing slowly above $19 \mu \mathrm{~F}$, the automatic subrange change takes place at 21 . But with C decreasing, the change takes place at 20. This hysteresis eliminates a possible cause of flickering of the display.

Autoranging. Autoranging is normal; it is inhibited only if you select RANGE HELD. There is a slight hysteresis in the changeover lat 20 as the value increases, at 19 as it decreases) to eliminate a possible cause of display flickering.

Range Holding. To inhibit autoranging, select this mode with the HOLO RANGE button, and verify that the RANGE HELD light is on. Whatever range the instrument is using for current or previous measurements will be held. For example, if a $100-\Omega$ resistor is being measured when you select HOLD range, then the operation of the instrument is locked to the low range, Range 1 , including the regularly unused overrange portion (labeled "low range held" on the RLC basic accuracy graph).

An advantage of holding a range is time saved. For example, if a large number of resistors are being measured in values below 900Ω, one might "hold" range 1 . Some accuracy of measurement would be sacrificed for values above 200Ω. But the system would save the time that would be required to change to range 2 and perhaps (for open-circuited parts) to range 3. For details of the time required to make typical measurements, refer to para 3.3.6.

The OUT OF RANGE arrows will indicate whenever a measurement is made on a range extension fexcept for the low underrangel. Thus;

- Neither arrow = all basic ranges and low underrange
- Left arrow = underrange (except low underrange)
- Right arrow $=$ overrange
- Both arrows = wrong parameter selected.

NOTE

The OUT OF RANGE and PANGE HELD indicators alert the operator to unusual measurement conditions that could be selected by mistake. Be watchful for these indicators.

3.5.3 Measurement Modes

Continuous. Select CONT for automatically repeating measurements, at one of 3 rates (approx. 2, 3, or 7 per second

Table 3-2
FULL SCALEREADOUTS ONEACH SUBRANGE

Range	Automatic subrange	$\begin{gathered} \mathrm{R} \\ 1 \mathrm{WHz} \end{gathered}$	$\begin{gathered} R \\ 120 / 100 / \mathrm{hz} \end{gathered}$	$\frac{1}{\mathrm{KHz}}$	$\frac{1}{120(100) 42}$	$\frac{\mathrm{C}}{1 \mathrm{kHz}}$	$\begin{gathered} \mathrm{C} \\ 120(1001 \mathrm{~Hz} \end{gathered}$	
	\cdots At	1.9999Ω	1.99998	.19999 mH	1.9999 mH			
1	1 B	19.999Ω	19.999Ω	1.9999 mH	19.999 mH	$19.999 \mu \mathrm{~F}$	199.99 HF	
$\left(Z_{0}=10 \Omega\right)$	10^{*}	999.99	999.99 ת	99.999 mH	999.99 mH	$999.99 \mu \mathrm{~F}$	9999.9 F	
	$10^{* *}$	-	---.- -	-	-	---	99999, $\mu \mathrm{F}$	
2	28	$1.9999 \mathrm{k} \Omega$	$1.9999 \mathrm{k} \Omega$. 19999 H	1.9999 H	. 19999 \% F	1.9999 HF	
$\left.1 z_{0}^{2}=1 \mathrm{k} \\|\right)$	20*	$99.999 k \Omega$	$99.999 \mathrm{k} \Omega$	9.9999 H	99.999 H	$9.9999 \mu \mathrm{~F}$	99.999 HF	
	3At	---	-----	-----	----	. 19999 n F	1.9999 nF	
3	3 B	. 19999 MR	.19999 MR	19.999 H	199.99 H	1.9999 nF	19.999 nF	
$\left.\underline{Z} Z_{0}=100 \mathrm{k} 2\right\}$	30^{*}	$9.9999 \mathrm{M} \mathrm{\Omega}$	$9.9999 \mathrm{M} \mathrm{\Omega}$	999,99 H	9999.9H	99.999 nF	999.99 nF	
	30^{*}	------	$99.999 \mathrm{M} \mathrm{\Omega}$				--	

[^6]as you choose SLOW, MED, or FAST. The displays will NOT be held after the DUT is removed or changed. Although there may be some annoyance due to changeability of the least significant digits in the displays, this mode provides a rapidly updated "current" measurement automatically. So it is the normal mode.

Single. Select SINGLE for a measurement to be made with each depression of the START button. The resulting RLC and DO displays are held until a subsequent measurement is made, regardless of changing the DUT. This mode is suitable for many kinds of "production" testing programs.

Average. Select AVERAGE for a string of 10 measurements to be made after each depression of the START button. A running average is displayed, that is, each time a measurement is completed, the RLC and DQ displays are updated to be the average of all measurements made since "start". After the 10 th measurement (6 or 7 s after "start", if selected RATE is SLOW, the displays are held, as described above. This mode provides smoothing of any possible "noise" or slight variation from one measurement to another theoretically identical measurement, in a particularly convenient way.

3.6 LIMIT-COMPARISON BINS.

3.6.1 introduction.

If a group of similar DUT's are to be measured, it is often convenient to use the limit-comparison capability of the Digibridge to categorize the parts. This can be done in leu of or in addition to recording the measured value of each part. For example, the instrument can be used to sort a group of nominally $2.2 \mu \mathrm{~F}$ capacitors into bins of $2 \%, 5 \%$, $10 \%, 20 \%$, lossy rejects, and other rejects. Or it can assign DUT's to bins of (for example) a 5% series such as $1.8,2.0$, $2.2,2.4,2.7 \mu \mathrm{~F}$, etc. The bin assignments can be displayed, for guidance in hand sorting, or (with the interface option) output automatically to a handler for mechanized sorting.

Up to 8 regular bins are provided for, in addition to a bin for DO rejects and a bin for all other rejects; total $=10$ bins. To set up the desired categories, use the 16 limit-entry keys in the left comer of the keyboard, as described below.

Limits are normally entered in pairs (defining the upper and lower limits of a bin), in the form of "nominal value" and "percent" above and below that nominal. If only one "percent" value is entered for a bin, the limit pair is symmetrical (such as $\pm 2 \%$). Two "percent" values must be entered, the higher one first, to set up a non-symmetrial pair of limits. Any overlapping portion of 2 bins is automatically assigned to the lower-numbered bin.

For simple GO/NO-GO testing, set up a DO limit and 1 regular bin. Entry of limits in additional bins will define additional GO conditions. Be sure the unused bins are closed. (Bins 1. . 8 are initially closed, at power-up.)

3.6.2 Limit Entry Methods

Figures 3-7, 3-8.
The figures illustrate 2 basic methods of limit entry: nested and sequential. Nested limits are the natural choice for sorting by tolerance around a single nominal value. The lower numbered bins must be narrower than the higher numbered ones. Symmetrical limit pairs are shown; but unsymmetrical ones are possible. (For example, range $A B$ could be assigned to bin 3 and range $F G$ to bin 4 by use of unsymmetrical limit pairs for these bins.)

Sequential limits, on the other hand, are the natural choice for sorting by nominal value. Any overlap is assigned to the lower numbered bin; any gap between bins defaults to bin 9 . The usual method of entry uses a redefined nominal value for each bin, with a symmetrical pair of limits. If it is necessary to define bins without overlap or gaps, use a single nominal value and unsymmetrical limit pairs. It is possible to set up one or more tighter-tolerance bins within each member of a sequence.

3.6.3 Limit Entry Procedure.

a. With FREOUENCY key, select test frequency.
b. With DISPLAY key, select ENTER LIMITS.
c. With parameter key R/Q, L/O, C/D, (by repeat keying) select convenient units as shown in the RLC display.
d. Enter the desired DQ limit by keying:
$[X][=][B \mid N$ No, $][0]$.
in which X represents I to 5 numerical keys and (optionally) the decimal-point key, depressed in sequence. Confirmation is shown on the DO display, up to 4 significant digits.
e. Enter a nominal value for limits by keying:
[Y] [=] [NOM VALUE],
in which Y represents 1 to 5 numerical keys and (optionally) the decimal-point key, depressed in sequence. Confirmation is shown on the RLC display.
f. For a symmetrical pair of limits (centered on the nominal value just entered), enter one percentage, by keying:
$[S][\%][=][B \mid N \mathrm{No}].[Z]$;
in which S represents 1 to 5 numerical keys and (optionally) the decimal-point key, depressed in sequence, forming a number not exceeding 100.00; and Z represents one key for the chosen bin: $1,2,3,4,5,6,7$, or 8 . Confirmation is shown, upper limit on the RLC display, lower limit (4 significant digits) on the DO display. Notice that these displays are actual R, L, or C values, not percentages.
g. For an unsymmetrical pair of limits, similarly, key in: $[\mathrm{H}][\%][-][\mathrm{L}][\%][=][\mathrm{BIN} \mathrm{NO}].[Z]$;
in which H represents a number not exceeding 10000 and L a number not exceeding 100.00. Both H and L (or neither) may have a negative-sign prefix; but H must always yield a higher limit (absolute value) than L.
h. To enter another pair of limits based on the established nominal value, repeat step f or g, choosing another bin numDer.

Figure 3.7. Nested limits. A single nominal value Y is used and all limit pairs are symmetrical in this basic plan.

Figure 3-8. Sequential limits. A different nominal value is entered for each bin and all limit pairs are symmetrical except for the unsymmetrical pair shown for example in bin 5.
i. To enter another pair of limits based on a different nominal value, repeat stepe and then step for g, similarly.
j. To change the limits in any of the 8 bins, reenter the pair, as above.
k. To close a bin that has limits entered in it, repeat step f with zero for S. Confirmation is shown by 2 identical numbers appearing in the RLC and DQ displays.

1. To resume operation of the Digibridge, using the limits entered as above, press the DISPLAY key. The display will be either measured VALUE, or BIN No., whichever you select. In either case, if you have the Interface Option, the available output data are not limited to the display selection.

3.6.4 Examples of Limit Entry.

Nested Limits. To enter a set of nested limits, operate the keyboard as described below for the example of resistors having $\mathrm{Q}<.001, \mathrm{R}=33 \mathrm{k} \Omega \pm 0.35 \%, \pm 1 \%, \pm 5 \%,+7-9 \%$.
a. With FREQUENCY key, select the desired test frequency.
b. With DISPLAY key, select ENTER LIMITS.
c. With parameter key R/Q, select RLC units: $M \Omega$.
d. Enter Q limit thus: [.] [0] [0] [1] [=] [BIN No.] [0].
e. Enter nominal RLC value: [.] [0] [3] [3] [=] [NOM VALUE].
f. Set bin 1 limits: [.] [3] [5] [\%] [=] [BIN No.] [1].
g. Set bin 2 limits: $[1][\%][=][B I N$ No. $][2]$.
h. Set bin 3 limits: [5] [\%] [=] [BIN No.] [3].
i. Set bin 4 limits: [7] [\%] [-] [9] [\%] [=][BIN No.] [4].

1. Close bin 5 , by keying: $[0][\%][=][$ BIN No.] [5].
k. Close bins 6, 7 , and 8 , similarly, if used before.

Sequential Limits. To enter a set of sequential limits, operate the keyboard as described below for the following capacitor sorting example: $\mathrm{D}<.005, \mathrm{C}=0.91,1.0,1.1$,
$1.2,1.3 \mu \mathrm{~F}$ (the standard 5% series),
a. With FREQUENCY key, select the desired test frequency.
b. With DISPLAY key, select ENTER LIMITS.
c. With parameter key C/D, select RLC units: $\mu \mathrm{F}$.
d. Enter D limit: [.] [0] [0] [5] [=] [BIN No.] [0].
e. Enter nominal RLC value: [.] [9] [1] [=] [NOM VALUE].
f. Set bin 1 limits: [5] [\%] [=] [B|N No.] [1].
g. Redefine nominal: $[1][=]$ [NOM VALUE].
h. Set bin 2 limits: [5] [\%] [=] [BIN No.] [2].
i. Redefine nominal: [1] [.] [1] [=] [NOM VALUE].
j. Set bin 3 limits: $[5][\%][=][B \mid N$ No.] [3];
k. Redefine nominal: [1] [.] [2] [=] [NOM VALUE].

1. Set bin 4 limits: [5] [\%] [=] [BIN No.] [4].
m . Redefine nominal: [1] [.] [3] [=] [NOM VALUE].
n. Set bin 5 limits: [5] [\%] [-] [BIN No.] [5].
o. Close bin 6: $[0][\%][=][B \mid N$ No. $][6]$.
p. Close bins 7 and 8 , similarly, if used before.

3.6.5 Entries in General.

For additional detail, refer to the condensed instructions on the reference card under the Digibridge, and to the following notes.

Frequency. Select the test frequency first. Comparison results are liable to error if the test frequency is changed later in the entry/measurement procedure.

Bin 0. The limit entered in bin 0 is always DO. For R it is Q; for C it is D, both upper limits. For L it is Q, a lower limit.

Unsymmetrical Limit Pairs. Enter 2 percentages for the bin. One or both may be + (unspecified sign) or - . Enter first the one that yields the larger absolute value of RLC. (Examples are shown above.)

Unused Bins. Initially, at power-up, bins $1 \ldots 8$ are closed so that unused ones can be ignored. Every unused bin that has previously been used (except 9) must be closed by entering 0%, as in the above examples. Once closed, it will stay closed until non-zero percent limits are inserted.

Allowable Limits. Positive limits up to 10000%, negative limits down to -100%, maximum of 5 significant figures (for example: 38.671%).

Bin Order. Optional except for nested bins; be sure the narrower limit pairs go into lower numbered bins (because all overlap goes to the lower bin).

Inhibiting Comparisons. To inhibit DQ comparisons, set bin 0 to the "all pass" extreme, i.e., to 0000 for Q or 9999 for D. To inhibit all comparisons, set NOM VALUE to zero. (Then GO/NO-GO indicators stay off.) Subsequent setting of NOM VALUE to any number except zero enables all comparisons as previously set up.

When POWER is switched ON, "nominal value" is initialized at zero. (Comparisons are inhibited.)

Changing Entries. Enter new value(s) - or a zero - to delete obsolete or erroneous nominal value or bin limits. Do not attempt to change or enter a single separate limit in a bin; any single percentage entered for a bin will be interpreted as a symmetrical pair of limits. Changing "nominal value" does not change any limits, but does determine the base for subsequent limit entries for specific bins.

RLC Unit Selection. No distinction is made between the 2 ranges that display in units of H or between the 2 ranges that display in units of $\mu \mathrm{F}$, in limits entry procedures. It is NOT necessary to select (for limit entry) the range that the Digibridge will use in measuring. For example (see para 3.6.4), it is equally valid to enter a nominal value of $.033 \mathrm{M} \Omega$, $33 k \Omega$, or 33000Ω.

3.6.6 Verification of Nominal and Limit Values.

While the DISPLAY selection is ENTER LIMITS, the exact values entered into the Digibridge can be seen by either of 2 methods, as follows:

During the Entry Process. A confirming display is automatically provided immediately after the final keystroke of each entry step. For example, after the [NOM VALUE] keystroke, the entered value appears on the RLC display.

After the [BIN No.] and number keystrokes, the actual limits of RLC value (not percentages) appear across the full display area: upper limit on the regular RLC display, lower limit (minus the least significant digit) in the regular DO display area. For bin 0 , the DO limit appears in the DQ area.

Upon Demand. To see the current "nominal value", depress the [NOM VALUE] key (while ENTER LIMITS is lit. To see the limits in any particular bin (or to verify that it has been closed), depress [BIN No.] and the desired number, similarly. Displays selected in this way are limited by the units that are shown on the panel. For example, if the bin-3 limits are 162 and $198 \mathrm{k} \Omega$, but the display units are Ω, when you press the [BIN No.] [3] keys, the display will go blank. Select either $k \Omega$ or $M \Omega$ (instead of Ω) to obtain a display of these limits.

However, any "nominal values" previous to the current one are lost and cannot be displayed (unless entered again). Bin limits are not lost until replaced by new entries in the particular bin; but they are lost when POWER is switched OFF.

3.6.7 Value, Bin, and Go/No-Go Displays.

The Digibridge measurement will be presented either of 2 ways; VALUE or BIN, but not both ways for a single measurement. This distinction is unimportant for most measurements, in the continuous mode. But for single or averagemode operation, select the desired display before pushing START.

Value. Select VALUE with the DISPLAY button. When measurement is completed, the value will be shown on the RLC and DO displays.

Bin. Alternatively, select BIN with the DISPLAY button. When measurement is completed, the bin assignment will be shown on the RLC display (a single digit), with the following significance:
$0=$ No-Go because of D or Q limit
$1=G o, \operatorname{bin} 1$
$2=G o, \operatorname{bin} 2$
... Go, bin $3,4,5,6,7$ or 8 , as indicated.
$9=$ No-go by default (suits no other bin).
GO/NO-GO. If comparison is enabled, by a non-zero entry for "nominal value" (see para 3.6.5), this indication is provided. The DISPLAY selection can be either VALUE or BIN. GO means the measurement falls in bin $1 \ldots 8$; NO-GO means bin 0 or 9 .

3.7 BIAS.

WARNING

- Maximum bias voltage is 60 V . Do NOT exceed.
- Bias voltage is present at connectors, test fixtures and on capacitors under test.
- Capacitors remain charged after measurement.
- Do not leave instrument unattended with bias "on".

NOTE

Keep the EXT BIAS switch OFF (regardless of whether any external bias source is connected) for all measurements made WITHOUT do bias applied to the DUT. (Switch ON, without a lowimpedance bias source causes errors in measurement.)
To measure capacitors with dc bias voltage applied:

3.7.1 Bias Less Than 30 V and C Less Than $1000 \mu \mathrm{~F}$.

a. Connect a bias supply via rear-panel connector, observing polarity, as described in para 2.6. Be sure the bias supply meets the requirements (such as current sinking and limiting to 200 mA) given in that paragraph. Generally, the external circuit must include switching for both application of bias and discharge of the DUT.
b. For capacitors less than $1000 \mu \mathrm{~F}$ only, with bias less than 30 V , use the EXT BIAS switch on the keyboard to apply bias (ON) and to discharge the DUT (OFF).

Notice that this switch should NOT be used for this purpose above 30 V , or $1000 \mu \mathrm{~F}$, or for production quantity measurements. In such cases, leave the EXT BIAS switch ON and use switches in the external circuit.
c. Be sure to orient the DUT correctly, positive terminal to the right.
d. Operate the bridge in the usual way. Disregard any measurements that may be made by the Digibridge in continuous measurement mode during the charge or discharge transients. Notice that the BIAS ON light indicates the presence of bias voltage; it goes off when the voltage drops to zero even though the EXTBIAS switch may be ON. It will not light if the bias power supply polarity is inverted.

3.7.2 Bias Up to 60 V .

a. Observe the warning above.
b. Connect bias power supply and external switching circuit as described above.
c. Keep the EXT BIAS swith ON (toward the rear) regulanly, unless you want to use it as an extra safety device. As a safety device, be sure to turn it ON before the external switch and OFF a second or more after the external switch is off.

To protect the operator and to avoid damaging the instrument, define a safe procedure like the one that follows and use it regularly:
a. Set the bias voltage to zero.
b. Attach the DUT, with correct polarity,
c. Raise the bias voltage to the specified value.
d. Allow a specified charging and soaking time.
e. Observe and record measurements (usually Cs and D).
f. Set the bias voltage source to zero.
g. Connect the 10Ω discharging circuit.
h. After about 2 s , connect the safety short circuit.
i. Remove the DUT.

3.8 OPERATION WITH A HANDLER

If you have the interface option and have made the system connections to a handler (para 2.7), the essential Digibridge operating procedure is as follows:
a. Enter the bin limits as described above.
b. Select the measurement conditions as desired: MEASUREMENT RATE, EQUIVALENT CIRCUIT, MEASUREMENT MODE (SINGLE), RANGE HOLD (or autorange). (Do NOT change FREQUENCY or parameter - R, L, C after limits have been entered.)
c. Select either BIN or VALUE DISPLAY for incidental monitoring of measurements while the handler automatically sorts the parts being processed.

3.9 SYSTEM CONSIDERATIONS

These considerations apply only if you have the interface option. If you do, there will be interface connectors at the rear. See Figure 1-2.)

3.9.1 IEEE-488 Interface Unused.

If there is no system connection to the IEEE-488
INTERFACE connector, be sure to keep the TALK switch set to TALK ONLY.

3.9.2 Talk-Only Use.

This pertains to a relatively simply system, with the Digibridge outputting data to one or more "listen-only" (IEEE-488 compatible) devices such as a printer.

Operate the Digibridge in the usual way (manually). The system may constrain operation in some way. For example, a slow printer will limit the measurement rate because it needs time to print one value before it can accept the next.

3.9.3 Talk/Listen Use.

Observe the REMOTE CONTROL indicator light, If it is lighted, there is no opportunity for manual operation (except entry of limits). The displays may be observed then, but their content is controlled by the system controller, via the IEEE-488 bus.

Entry of Limits. Any remotely controlled systems use involving limit comparisons must be designed for manual entry of limits, as follows:
a. Be sure the REMOTE CONTROL light is out.
b. Enter the limits as described in para 3.6.
c. Enable the controller to proceed. (This step may require attention to controls on some other device.)

3.10 CARE OF DISPLAY PANEL.

Use caution when cleaning the display window, not to scratch it nor to get cleaning substances into the instrument. Use soft cloth or a ball of absorbent cotton, moistened with a mild glass cleaner, such as "Windex" (Drackett Products Co., Cincinnati, Ohio). Do NOT use a paper towel; do NOT use enough liquid to drip or run.

If it should be necessary to place marks on the window, use paper-based masking tape (NOT any kind of marking pen, which could be abrasive or react chemically with the plasticl. To minimize retention of any gummy residue, remove the tape within a few weeks.

Theory-Section 4

4.1 INTRODUCTION 4.1
4.2 PRINCIPAL FUNCTIONS 4.2

4. 1 INTRODUCTION.

4.1.1 General.

This instrument uses an unusual method of measurement, which is quite different from those used in most previous impedance meters or bridges. A thorough understanding of this method will be helpful in unusual applications of the instrument and be useful in trouble analysis, in case of a possible malfunction. The following paragraph gives a brief overall description outlining the measurement technique to one familiar with impedance measurement methods. A more detalled description of operation, specific circuitry, and control signals is given later.

4.1.2 Brief Description of the 1658 Digibridge.

This Digibridge TM uses a new measurement technique in which a microprocessor calculates the desired impedance parameters from a series of 5,8 , or 16 voltage measurements (for FAST. MED, and SLOW measurement rates, respectively)." These measurements include quadrature $\left(90^{\circ}\right)$ and inverse $\left(180^{\circ}\right)$ vector components of the voltage across a standard resistor $R \times$ carrying the same current as $Z \mathrm{Zx} .{ }^{* *}$ Each of these measurements is meaningless by itself, because the current through $Z x$ is not controlled. But each set of voltage measurements is made in rapid sequence with the same phase-sensitive detector and analog-to-digital converter. Therefore properly chosen differences between these measurements subtract out fixed offset errors, and ratios between the differences cancel out the value of the common current and the scale factor of the detectorconverter.

The phase-sensitive detector uses eight reference signals, precisely 45° apart, that have exactly the same frequency as the test signal, but whose phase relationship to any of the analog voltages or currents (such as the current through $Z x$ and $R x)$ is incidental. Therefore, no precise analog phase shifter or waveform squaring circuit is required. Correct phase relationships are maintained by generating test signal and reference signals from the same high-frequency source.

[^7]There are no calibration adjustments in the Digibridge, thanks to the measurement technique. The only precision components in this instrument are three standard resistors and a quartz-crystal stabilized oscillator. There is no reactance standard. For example, C and D are calculated by the microprocessor from the set of voltage measurements and predetermined values of frequency and the applicable standard resistance.

The microprocessor also controls the measurement sequence, using programs in the RON memory and stored keyboard selections. The desired parameters, C and D, L and Q , or P and Q ; equivalent circuit, series or parallel; test rate, slow, medium or fast; and frequency, either 120 Hz $(100 \mathrm{~Hz})$ or 1 kHz , are selected by keyboard control. The instrument normally autoranges to find the correct range; but operation can be restricted to any of the three ranges $(1,2,3)$, under keyboard control.

Each range is 2 decades wide, with reduced-accuracy extensions both above and below. For example, consider resistance measurement on Range 1 (Figure 3-2). The 2 decades extend from 02.000Ω, with an automatic decimal-point shift at 21.000 going up (at: 020.00 , going down) to 200.00Ω. The range extensions generally go as far as can be displayed without further decimal-point shifting. In our example, the low-range-held overrange extension goes up to 999.99Ω.

However, the low underrange is different from the low extensions (range heid) of mid and high ranges, in that there is an additional decimal-point shift to provide excellent resolution in small-value measurements. Continuing with the example, the shift takes place a 2.1000Ω going up and at 02.000Ω going down. Consequently, this low underrange goes down to 0.0001Ω. Similarly, for L / O, the smallest measurement is .00001 mH ; for C/D, it is .00001 nF .

There is a decimal-point shift without hysteresis in the high overrange for P and C only, at $120 \mathrm{~Hz}(100 \mathrm{~Hz})$ oniy. This shift takes place between 9.9999 and 10.000 MR for R, between 9999.9 and $10000 \mu \mathrm{~F}$ for C .

Leading zeroes before the decimal point are blanked out of the RLC display. Such blanked zeroes are designated with the symbol in some parts of this manual.

Figure 4-1. Functional block diagram.

Test frequences are within 2% of the front-panel indication. However, for reasons related to rejection of power-line-frequency stray signals that could be picked up by the DUT, thereby causing measurement errors; the actual frequencies are as follows - accurate to $\pm 0.01 \%$:
catalog number $1658-9700: 1020.0 \mathrm{~Hz}, 120.00 \mathrm{~Hz}$
catalog number $1658-9800: 1000.0 \mathrm{~Hz}, 100.00 \mathrm{~Hz}$.

4.1.3 Block Diagram.

Figure 4-1.
The block diagram shows the microprocessor in the upper center connected by data and address buses to digital circuitry including RAM and ROM memories, and peripheral interface adaptors (P|A's).
Analog circuitry is shown in the lower part of the diagram, where $Z x$ is supplied with a test signal at frequency f from a sine-wave generator, driven by a crystalcontrolled digital frequency divider circuit. The front-end amplifier circuit supplies an analog signal that represents two impedances altemately: the internal standard, $R x$, and the DUT, $Z x$.

The detector control block provides sampling commands (in eight phases). The detector is a dual-slope converter, including an integrator and comparator, which converts each phase component of the analog signal proportionally into a period of time. The dual-slope measurement is converted into a digital number by a counter that is gated by this period.

From this information and criteria selected by the keyboard (or remote control), the microprocessor calculates the RLC and DQ values subsequently displayed.

4.2 PRINCIPAL FUNCTIONS.

4.2.1 Elementary Measurement Circuit.

Figure 4-2.
The measurement technique is shown diagrammatically. A sine-wave generator drives current I x through the DUT Zx and standard resistor Rs in series. Two differential amplifiers with the same gain K produce voltages e_{1} and e_{2} Simple algebra, some of which is shown in the figure, leads to the expression for the "unknown" impedance:

$$
Z x=\operatorname{Rs}\left[e_{1} / e_{2}\right]
$$

Notice that this ratio is complex. Both a magnitude and a loss (or quality) value are automatically calculated from $Z x$ and frequency.

4.2.2 Frequency and Time Source

Figure 4-3.
A necessary standard for accuracy is the frequency of the test signal; and equally important are the generation of eight-phase references for detection and clocks for the microprocessor. Frequency and timing requirements are implemented by derivation from a single very accurate oscillator, operating near 25 MHz . Digital dividers and logic circuitry provide the many clocks and triggers, as well as driving the sine-wave generator described below.

Fiqure 4-2. Elementary measurement circuit.

Figure 4-3. Frequency and timing source. A pushbutton determines the trequency select function. Soveral clocks and synchronizing putses as well as the measurement signal are derived from the accurate time-base signal.

4.2 .3 Sine-Wave Generation

Figure 4.4.
Starting with a digital signal at 256 times the selected test frequency, the sine-wave generator provides the test signal that drives a small but essential current through the DUT.

Binary dividers count down from 256 F , providing $128 \mathrm{~F}, 64 \mathrm{~F}, 32 \mathrm{~F}, \ldots 2 \mathrm{~F}, \mathrm{~F}$. This set of signals is used to address a read-only memory which contains a 256 -step approximation to a sine function. The ROM output (as an eight-bit binary number) is converted by a D/A converter to a somewhat "nolsy" sine-wave, which is then smoothed by filtering before its use in the measurement of a DUT. The filter is switched appropriately, according to the selected test frequency.

Figure 4-4. Sine wave generator. Given a square wave at 256 f , from preceding dividers, this generaror uses a RON containing the mathematical sine function to form a finely stepped approximation to a sine wave at frequency f. A filter provides smoothing.

Service and Maintenance-Section 5

5.1 CUSTOMER SERVICE $5-1$
5.2 INSTRUMENT RETURN 5.1
5.3 REPAIR AND REPLACEMENT OF PLUG-IN BOARDS 5-1
5.4 PERFORMANCE VERIFICATION 5.2
5.5 MINIMUM-PERFORMANCE STANDARDS 5 -2
5.6 DISASSEMBLY AND ACCESS $5-9$

57 PERIODIC MAINTENANCE 511
5.8 TROUBLE ANALYSIS 513

WARNING

These servicing instructions are for use by qualified personnel only. To avoid electrical shock, do not perform any servicing, other than that contained in the operating instructions, unless you are qualified to do so.

CAUTIONS

For continued protection against fire hazard, replace fuse only with same type and ratings as shown on rear panel and in parts list.

Service personnel, observe the following precautions whenever you handle a circuit board or integrated circuit in this instrument.

HANDLING PRECAUTIONS FOR ELECTRONIC DEVICES

SUBJECT TO DAMAGE BY STATIC ELECTRICITY

Place instrument or system component to be serviced, spare parts in conductive (anti-static) envelopes or carriers, hand tools, etc. on a work surface defined as follows. The work surface, typically a bench top, must be conductive and reliably connected to earth ground through a safety resistance of approximately 250 kilohms to 500 kilohms. Also, for personnel safety, the surface must NOT be metal. (A resistivity of 30 to 300 kilohms per square is suggested.) Avoid placing tools or electrical parts on insulators, such as books, paper, rubber pads, plastic bags, or trays.

Ground the frame of any line-powered equipment, test instruments, lamps, drills, soldering irons, etc., directly to earth ground. Accordingly, (to avoid shorting out the safety resistance) be sure that grounded equipment has rubber feet or other means of insulation from the work surface. The instrument or system component being serviced should be similarly insulated while grounded through the power-
cord ground wire, but must be connected to the work surface before, during, and after any disassembly or other procedure in which the line cord is disconnected. Use a clip lead.)

Exclude any hand tools and other items that can generate a static charge. (Examples of forbidden items are nonconductive plunger-type solder suckers and rolls of electrical tape.)

Ground yourself reliably, through a resistance, to the work surface; use, for example, a conductive strap or cable with a wrist cuff. The cuff must make electrical contact directly with your skin; do NOT wear it over clothing. (Resistance between skin contact and work surface through a commercially available personnel grounding device is typically in the range of 250 kilohms to 1 megohm.)

If any circuit boards or IC packages are to be stored or transported, enclose them in conductive envelopes and/or carriers. Remove the items from such envelopes only with the above precautions; handie IC packages without touching the contact pins.

Avoid circumstances that are likely to produce static charges, such as wearing clothes of synthetic material, sitting on a plastic-covered or rubber-footed stool (particularly while wearing wool), combing your hair, or making extensive erasures. These circumstances are most significant when the air is dry.

When testing static-sensitive devices, be sure dc power is on before, during, and after application of test signals. Be sure all pertinent voltages have been switched off while boards or components are removed or inserted, whether hard-wired or plug-in.

5.1 CUSTOMER SERVICE,

Our warranty (at the front of this manual) attests the quality of materials and workmanship in our products, If malfunction does occur, our service engineers will assist in any way possible. If the difficulty cannot be eliminated by use of the following service instructions, please write or phone the nearest GenRad service facility (see back page), giving full information of the trouble and of steps taken to remedy it. Describe the instrument by name, catalog number, serial number, and ID (lot) number if any. (Refer to front and rear panels.)

5.2 INSTRUMENT RETURN.

5.2.1 Returned Material Number.

Before returning an instrument to GenRad for service, please ask our nearest office for a "Returned Material" number. Use of this number in correspondence and on a tag tied to the instrument will ensure proper handling and identification. After the initial warranty period, please avoid unnecessary delay by indicating how payment will be made, i.e., send a purchase-order number.

5.2.2 Packaging.

To safeguard your instrument during storage and shipment, please use packaging that is adequate to protect it from damage, i.e., equivalent to the original packaging. Any GenRad field office can advise or provide packing material for this purpose. Contract packaging companies in many cities can provide dependable custom packaging on short notice. Here are two recommended packaging methods.

Rubberized Hair. Cover painted surfaces of instrument with protective wrapping paper. Pack instrument securely in strong protective corrugated container ($350 \mathrm{lb} / \mathrm{sq}$ in. bursting test), with $2-\mathrm{in}$, rubberized hair pads placed along
all surfaces of the instrument. Insert fillers between pads and container to ensure a snug fit. Mark the box "Delicate Instrument" and seal with strong tape or metal bands.

Excelsior. Cover painted surfaces of instrument with protective wrapping paper. Pack instrument in strong corrugated container ($350 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. bursting test), with a layer of excelsior about 6 in . thick packed firmly against all surfaces of the instrument. Mark and seal the box as described above.

5.3 REPAIR AND REPLACEMENT OF CIRCUIT BOARDS.

This instruction manual contains sufficient information to guide an experienced and skillful electronic technician in fault analysis and the repair of some circuits in this instrument. If a malfunction is localized to one board (or more) that is not readily repairable, it can be returned to GenRad for repair. To save time, we recommend that you obtain a replacement first, as described below, before returning the faulty board.

Exchanges, For economical, prompt replacement of any etched-circuit board, order an exchange board. Its price is considerably less than that of a new one. Place the order through your nearest GenRad repair facility. (Refer to the last page of this manual.) Be sure to request an exchange board and supply the following information:

1. Instrument description: name and catalog and serial numbers. Refer to front and rear panels.
2. Part number of board. Refer to the parts lists in this manual. (The number etched in the foil is generally NOT the part number.)
3. Your purchase order number. This number facilitates billing if the unit is out of warranty and serves to iden tify the shipment.
To prevent damage to the board, return the defective board in the packing supplied with the replacement for equivalent protection). Please identify the return with the

Return Material number on the tag supplied with the replacement and ship to the address indicated on the tag.

New Boards, For equally prompt replacement of any etched-circuit board, and for maximum life expectancy, order a new one. Use the same procedure as described above, but request a new board. Please return the defective one to GenRad.

5.A PERFORMANCE VERIFICATION.

This procedure is recommended for verification that the instrument is performing normally, No other check is gen" erally necessary because this procedure checks operation of nearly all the circuitry. There are no calibrations or adjustments that could require resetting; and the internal standards are very stable. (However, for a rigorous performance and accuracy check, refer to para 5.5.) The necessary resistors, capacitors, and inductors are inexpensive and readily obtained. The most accurate ones avallable should be used; tolerances listed are the "best" commonly catalogued. Refer to Table 5-1.

CAUTION

Be sure the line voltage switch, rear panel, is correctly set for your power line voltage.

Table 5.1
RESISTORS, CAPACITORS, AND INDUCTORS

Name	Type*	Nominal Value	Tolerance (\%)
Pesistors, metal film	MIL-R-10509CStyle RN60	49.98	0.1
		4998	0.1
		$4.99 \mathrm{k} \Omega$	0.1
		49.9 ks	0.1
		499 k 2	0.1
Capactors, polystyrene		$0.0033 \mu \mathrm{~F}$	0.5
		$0.033 \mu \mathrm{~F}$	0.5
		0,33 $\mu \mathrm{F}$	0.5
		$0.5 \mu \mathrm{~F}$	0.5
....metalized	GE: BA-14A105C	$1.0 \mu \mathrm{~F}$	5
polyester	BA-19A106C	$10 \mu \mathrm{~F}$	5
inductors,	J.W. Milier:		
nonferrous	9220-28	$1000 \mu \mathrm{H}$	5
ferrite core	9250-107	100 mH	10

* Equivalents may be substituted.

Verify performance as follows:
a. Set the line voltage switch, connect the power cord, and depress the POWER button.
b. Press the MEASURE RATE button as many times as necessary to select SLOW. For DISPLAY, verify that the VALUE light is on; for EQUIVALENT CIRCUIT, the SERIES IIght, If necessary, operate the corresponding buttons,
c. Press the FREOUENCY button as many times as necessary to select $120 \mathrm{~Hz}(100 \mathrm{~Hz})$. For MEASURE MODE, verify that the CONT light is on; for HOLD RANGE, that the RANGE HELD light (on display panel) is NOT on. (If necessary operate the corresponding buttons.)
d. Press parameter button R/O and verify that any one of the corresponding units is indicated on the display panel $(M \Omega, k \Omega$, or $\Omega)$.
e. Set the EXT BIAS slide switch to OFF. Set the TALK switch (rear panel, provided only with the Interface Option) to TALK ONLY.
f. Install the test fix ture adaptors, as described in para 3.2. Insert the 49.98 resistor as the device under test or "unknown" component (DUT).
9. Verify that the displays are within the extremes shown in "check number 1 " in Table $5-2$, if the resistor value is within the tolerance listed above.
h. Similarly make the other checks indicated in this table. In check number 12, verify that the 5 th digit is rea. sonably stable, as follows. (Notice that the 4 th digit is the least significant one in the readout, for $0,2 \%$ accuracy.)
i. In check number 12, the flickering of the 5 th digit should stay typically within a range of ± 3 counts. For example, if the display is $1.051 \times \mu F$, the " X " might flicker between 2 and 8 (or a smaller range). If, for example, " X " is flickering between 7 and 13 , it will of course cause a flickering of the preceding digit (1.0517 to 1.0523). In such a case, the correct readout is the larger 4 -digit number (1.052) and the 5 th digit is acceptably stable.

Tolerances. Acceptable performance of the instrument is bracketed by the set of display "extremes' in Table $5-2$. These are defined as the nominal (ideal) measurements plus-or-minus the sum of the instrument accuracy tolerance and the DUT accuracy tolerance (or slightly more). If the accuracy of your DUT is different from the recommendation, revise the acceptable "extremes" accordingly. Notice that this performance verification is NOT intended to prove the accuracy of the instrument.

Insignificant Figures. The righthand digit(s) of the display normally flicker and change if they are not significant for the specified accuracy of the instrument. Refer to para 3,3.

5.5 MINIMUM PERFORMANCE STANDARDS.

5.5.1 General.

This procedure is a more rigorous alternative to the performance verification described above. Precision standards of impedance are required for this procedure, which checks the accuracy as well as the overall performance of the instrument. It will be controlled from the front panel, without disassembly. Table 5-3 lists the recommended standards and associated equipment.

Table 5-2

PERFORMANCE VERIFICATION

Check Number	Parameter: Frequency	DUT	RLC Display Extremes	Do Display Extremes
1	$\mathrm{R} / \mathrm{Q} ; 120 \mathrm{Hz*}$	49.9Ω	049.8010050 .002	
2		499Ω	0.4980 to $0.5000 \mathrm{k} \Omega$	
3		$4.99 \mathrm{k} \Omega$	04,980 to $05.000 \mathrm{k} \Omega$	
4		$49.9 \mathrm{k} \Omega$.04980 to. 05000 Ma	
5		$499 \mathrm{k} \Omega$	0.4980 ¢0. 0.5000 Ma	
6	C/D: 1 kHz	. $0033 \mathrm{\mu F}$	03.280 to 03.320 nF	(.0000 to.0100)
7	120 Hz *	. $0033 \mu \mathrm{~F}$	03.280 to 03.320 nt	
8	1 kHz	. $033 \mu \mathrm{~F}$.03280 $50.03320 \mu \mathrm{~F}$	
9	$120 \mathrm{~Hz}^{*}$. $033 \mu \mathrm{~F}$	032.80 to 0.3320 nF	(.0000 10.0100)
10	both frea	$0.33 \mu \mathrm{~F}$	0.3280 to $0.3320 \mu \mathrm{~F}$	
11	both freg	$0.5 \mu \mathrm{~F}$	0.4970 to 0.5030 $\mu \mathrm{F}$	
12	both frea	$1.0 \mu \mathrm{~F}$	0.9480 to $1.0520 \mu \mathrm{~F}$	(.0000 to 0.0300)
13	1 kHz	$10 \mu \mathrm{~F}$	$09.480 \div 0.10 .520 \mu F$	
14	$120 \mathrm{~Hz}^{*}$	$10 \mu \mathrm{~F}$	09.480 to $10.520 \mu \mathrm{~F}$	
15	$\mathrm{L} / \mathrm{O} ; 1 \mathrm{KHz}$	$1000 \mu \mathrm{H}$	0.9480 to 1.0520 mH	(03.00 to 300.0)
16		100 mH	. 08980 to. 11020 H	(03.00 50.300 .0$)$

* 120 or 100 Hz .
* Refer to paragraphs headed "Tolerances" and "Insignfficant figures," in the accompanying text.

Table 5-3
EQUIPMENT FOR ACCURACY VERIFICATION AND TROUBLE ANALYSIS

Name	Requirements	Recommended Type*
Extender cable	Adapts text fixture to standards with binding posts and banana plugs.	GR 1657-9600
Resistors	Four-terminal, $1 \Omega, 0.02 \%$	GR 1440-9601
	$10 \Omega, 0.01 \%$	GR 1440-9611
	Decade, 100 to $111110002,0.01 \%$	GR 1433-9719 (-Y)
Capacitors	Three-terminal, 100 pF, 0.02%	GR $1403-9704(-\mathrm{D})$
	$1000 \mathrm{pF}, 0.02 \%$	GR 1403-9701 (-A)
	Decade, 3-terminal, 1 pF to $1(+) \mu \mathrm{F}, 0.05 \% \pm 0.5 \mathrm{pF}$.	GP 1413-9700
	Fourterminal, ratio type, $1 \mu \mathrm{~F}$ to $10 \mathrm{mF}, 0.25 \%$ (ratios, 0.02%)	GR 1417-9700
	Dc blocking. 500 HF, 10 V .	GE 69F2214G2
Inductors	Fixed, 2-terminal, $100 \mathrm{mH}, 0.1 \%$.	GR 1482-9712 (-L)
Adaptors	GR874 (for 1413 capacitor) and binding-post pair (iwo required).	GR 0874.9870 (-02)
Shorting link	Ground jumper connection.	GR 0938-9712 (-L)
Scope **	General purpose, 100 MHz , dual trace.	Tektronix 465
Scope probe**	Capacitance less than $10 \mathrm{pF}, \times 10$.	Tektronix P60538
Voltmeter**	Digital, general purpose, with probe.	Data Precision 3400
Counter**	De to $35 \mathrm{MHz}, 10 \mathrm{Vms}$	Tektronix DC504
Pulse generator**	General purpose.	Tektronix PG501
Resistor**	200 ohm, $1 / 4$ watt.	-

[^8]Verify that the instrument meets performance specifications as follows.

Calibration of Standard. The acceptable R LC readout (min to max range) may have to be modified if the actual (calibrated) value of your standard - Zx - or its accuracy Zx accuracy - (either or both) is different from the tabulated value(s).

For example, if your $10-\Omega$ standard is known to be $10.006 \pm .002 \Omega$, then add $.005 \Omega$ to the lower acceptable extreme and add . 007Ω to the upper one. (In Table 5-4, 2nd line, substitute the numbers 09.994 to 10.018 .)

Insignificant Digits. The right-hand digit(s) of the display normally may flicker and change if they are not significant for the specified accuracy of the instrument. Refer to para 3.3.

Cable Capacitance. Because the cable adds capacitance in parallel with the DUT, it is sometimes necessary to obtain a "corrected readout" from the numerical display on the instrument. Do this for all checks involving small capacitance (less than about 1000 pF). The equivalent correction for large inductance (above 30 H at 1 kHz or 3000 H at 120 Hz) is not applicable in the recommended inductance check procedure. For capacitance measurement, obtain the corrected readout by subtracting the cable capacitance from
the visible readout, as described in para 3.2. Because C is large compared to cable capacitance and D is small, the simple calculation (subtraction) is applicable whether the measurement is "parallel" or "series."

CAUTION

Be sure the line voltage switch, rear panel, is correctly set for your power line voltage.

5.5.2 Resistance Measurement Accuracy.

Make the test setup and verify instrument performance as follows.
a. Set the line voltage switch, connect the power cord, and depress the POWER button, as described in para 3.1.
b. Connect the extender cable to the Digibridge test fixture, as described in para 3.2.
c. Connect a standard resistor ($1-\Omega$ initially) to the extender cable, as follows:

RED, It: left front terminal of resistor
RED \& WHITE; P+: left rear terminal
$B L A C K, 1-$: right front terminal
BLACK \& WHITE, $P-$: right rear terminal
BLACK \& GREEN, G: no connection.

Table 5-4
RESISTANCE ACCURACY CHECKS

Standard as DUT*	Test Frequency	Equivalent Circuit	Measure Rate	Typical Standard Accuracy* (\%)	Digibridge Accuracy (\%)	RLC Display Acceptable Extremes*
1.000Ω	1 kHz	SERIES	SLOW	. 02	0.2	0.9978 to 1.0022Ω
10.00Ω	1 kHz	SERIES	SLOW	. 01	0.1	09.989 to 10.011Ω
10.00Ω	1 kHz	SERIES	MEDIUM	. 01	0.2	09.979 to 10.021Ω
10.00Ω	1 kHz	SERIES	FAST	. 01	0.5	09.949 to 10.051Ω
100.0Ω	1 kHz	SERIES	SLOW	-. $01 .+.02$	0.1	099.89 to 100.12Ω
100.0Ω	1 kHz	SERIES	MEDIUM	-.01, +.02	0.2	099.79 to 100.22Ω
100.0Ω	1 kHz	SERIES	FAST	$-.01,+.02$	0.5	099.49 to 100.52Ω
$1.000 \mathrm{k} \Omega$	1 kHz	SERIES	SLOW	. 01	0.1	0.9989 to $1.0011 \mathrm{k} \Omega$
$1.000 \mathrm{k} \Omega$	1 kHz	SERIES	MEDIUM	. 01	0.2	0.9979 to $1.0021 \mathrm{k} \Omega$
$1.000 \mathrm{k} \Omega$	1 kHz	SERIES	FAST	. 01	0.5	0.9949 to $1.0051 \mathrm{k} \Omega$
10.00 kr	1 kHz	PARALLEL	SLOW	. 01	0.1	09.989 to $10.011 \mathrm{k} \Omega$
10.00 kr	1 kHz	PARALLEL	MEDIUM	. 01	0.2	09.979 to $10.021 \mathrm{k} \Omega$
$10.00 \mathrm{k} \Omega$	1 kHz	PARALLEL	FAST	.01	0.5	09.949 to $10.051 \mathrm{k} \Omega$
$100.0 \mathrm{k} \Omega$	1 kHz	PARALLEL	SLOW	. 01	0.1	. 09989 to 10011 Ms
$100.0 \mathrm{k} \Omega$	1 kHz	PARALLEL	MEDIUM	. 01	0.2	. 09979 to 10021 Ms
100.0 ks 2	1 kHz	PARALLEL	FAST	. 01	0.5	. 09949 to $10051 \mathrm{M} \Omega$
$1.000 \mathrm{M} \mathrm{\Omega}$	1 kHz	PARALLEL	SLOW	. 01	0.1	0.9989 to 1.0011 Ms
$1.000 \mathrm{M} \Omega$	$120 \mathrm{Hz+}$	PARALLEL	SLOW	. 01	0.1	0.9989 to 1.0011 Mr
$1.000 \mathrm{M} \Omega$	1 kHz	PARALLEL	MEDIUM	. 01	0.2	0.9979 to 1.0021 Ma
1.000 Ma	120 Hzt	PARALLEL	MEDIUM	. 01	0.2	0.9979 to 1.0021 Ma
1.000 Mr	120 Hzt	PARALLEL	FAST	. 01	0.5	0.9949 to 1.0051 MR
1.000 Ma	1 kHz	PARALLEL	FAST	.01	0.5	0.9949 to 1.0051 Ma

[^9]d. Set up the measurement conditions on the Digibridge as tabulated below. (See para 3.1.)

DISPLAY - VALUE
MEASURE RATE - SLOW (initially)
EQUIVALENT CIRCUIT - SERIES (initially)
FREQUENCY -- 1 kHz (initially)
MEASURE MODE - CONT
HOLD RANGE - autorange (RANGE HELD light off)
Parameter - R/Q (resistance units light on)
EXTBIAS - OFF
TALK (on Interface Option only) - TALK ONLY
e. Refer to Table 5-4. Verify that the RLC display is between the extremes (inclusively) shown in the 1st row. Proceed down the table, changing the resistance standard and verifying the RLC readout as shown; refer to the next step.
f. For larger values of resistance standard, use the decade resistor, making connection as follows.

RED, 1+: stack on P+
RED \& WHITE, Pt: resistor H
BLACK, 1 -: stack on P -
BLACK \& WHITE, P-; resistor L
BLACK \& GREEN, G: resistor G.

5.5.3 Single and Average Modes.

Retain the conditions of the last row in Table $5-4$ except as follows. Set the Digibridge to:

MEASURE MODE - SINGLE
a. Press START.
b. Verify that the subsequent RLC display is acceptable, as before. (Repeated starts will yield different display values but they should be within the acceptable extremes, inclusively.)
c. Set the Digibridge to:

MEASURE MODE - AVERAGE,
d. Press START.
e, Verify that the RLC display is acceptable, as before, after allowing 5 s (time for the instrument to complete 10 measurements). Repeated starts will yield different display values, but the "final" averages should be less variable than the measurements in step b.

5.5.4 Capacitance Measurement Accuracy (Small C).

Make the test setup and verify Digibridge performance as a continuation of the previous procedure, except as follows:
a. Remove the resistance standard and connect the testfixture extender cable tips to the pair of 874 adaptors thus:

RED, 1+: stack on P+
RED \& WHITE, P+: center post of 1st adaptor BLACK, 1-; stack on P-
BLACK \& WHITE, P-: center post of 2nd adaptor BLACK \& GREEN, G: side post of 2nd adaptor When the standard is the 1403 type of capacitor, connect each adaptor to one of the coaxial ports. When it is the 1413 (decade box) capacitor, connect the 1st adaptor to the port
labeled H, connect 2 nd adaptor to port L, and be sure to link the side (ground) posts together, using the recommended link or a short piece of bus wire.
b. Confirm or select measurement conditions on the Digibridge thus:

DISPLAY - VALUE
MEASURE RATE - SLOW
EQUIVALENT CIRCUIT - PARALLEL
FREQUENCY -1 kHz
MEASURE MODE - CONT
HOLD RANGE - autorange (RANGE HELD light off)
Parameter - C/D (capacitance units light on)
EXT BIAS - OFF
TALK (on Interface Option only) - TALK ONLY.
c. Refer to Table 5-5, 1st row. Connect the capacitance standard and arrange the cable as desired for the complete measurement. Determine Co, the "zero capacitance" of extender cable and associated connections, as follows.

Carefully lift the red stacked pair of cable tips free from the post in the 1 st adaptor. Hold them about $0.5 \mathrm{~cm}(1 / 4 \mathrm{in}$.) above the binding post where they belong. DO NOT rearrange the cable branches or change their spacing more than is absolutely necessary to follow these directions. Hold the plastic tips (not the wires or conductors) and firmly touch a finger to the guard (G) circuit, to minimize the effect of capacitance in your body.

Read the capacitance Co on the RLC display. Then plug the stacked pair of cable tips into the 1st adaptor as described before.
d. Read the RLC display, with the capacitance standard connected. Correct the reading by subtracting "zero" capacitance, shown in the table as $\mathrm{Co}^{\text {." V Verify that this result is }}$ within the specifications.
e. Proceed down the table, changing capacitance standard if necessary and determining Co again with each such change. For each row in the table, also select frequency and measurement rate as tabulated; then verify that the RLC display (corrected) meets the specifications.

Notice that different values of Co are to be expected with each change in the capacitance standard (Co' with 100 pF , Co' with 1000 pF , and Co with the decade capacitor are shown in the table). When the decade capacitor is connected, determine Co with the decade switches all set to zero and the extender cable connected. In this case, do NOT hold any extender-cable tips in the lifted position.)

5.5.5 Limit Comparison Bins.

Verify the Digibridge performance with regard to limit comparison and bin assignments as follows. The test setup is unchanged from the previous one.
a. Confirm or select measurement conditions on the Digibridge as listed:

DISPLAY - ENTER LIMITS (new condition)
MEASURE RATE - SLOW
EOUIVALENT CIPCUIT - PARALLEL

Table 5-5
CAPACITANCE ACCUPACY CHECKS

Standard as DUT*	Test Frequency	Measure Rate	Typical Standard Accuracy* (\%)	Digibridge Accuracy* (\%)	Correction	Corrected Display* Acceptable Extremes	DO Display Maximum
100.0 pF	1 kHz	SLOW	. 03	0.2	$-\mathrm{Co}^{\prime \prime}$.09977 to 1.0023 nF	-
1000. pF	1 kHz	SLOW	. 02	0.1	-Co'	0.9988 to 1.0012 nF	. 0010
1000.pF	$120 \mathrm{~Hz} \ddagger$	SLOW	. 02	0.2	- CO^{\prime}	0.9978 to 1.0022 nF	. 0010
1000. pF	120 Hzt	MEDIUM	. 02	0.4	$-\mathrm{Co}$	0.9958 to 1.0042 nF	-
1000. pF	1 kHz	MEDIUM	. 02	0.2	--Co'	0.9978 to 1.0022 nF	-
1000. pF	1 kHz	FAST	. 02	0.5	- Co'	0.9948 to 1.0052 nF	-
1000, pF	$120 \mathrm{Hz+}$	FAST	. 02	1.0	$-\mathrm{Co}$	0.9898 to 1.0102 nF	-
10000 pF	Both	FAST	. 05	0.5	-Co	09.945 to 10.055 nF	
10000 pF	Both	MEDIUM	. 05	0.2	-Co	09.975 to 10.025 nF	-
10000 pF	Both	SLOW	. 05	0.1	-Co	09.985 to 10.015 nF	. 0010
0.100 $\mu \mathrm{F}$	1 kHz	SLOW	. 05	0.1	- Co	. 09985 to $10015 \mu \mathrm{~F}$	-
$0.100 \mu \mathrm{~F}$	120 Hzt	SLOW	. 05	0.1	- Co	099.85 to 100.15 nF	-
$0.100 \mu \mathrm{~F}$	$120 \mathrm{~Hz}+$	MEDIUM	. 05	0.2	- Co	099.75 to 100.25 nF	-
$0.100 \mu F$	1 kHz	MEDIUM	. 05	0.2	-Co	. 09975 to. $10025 \mu \mathrm{~F}$	-
$0.100 \mu F$	1 kHz	FAST	. 05	0.5	- Co	. 09945 to. $10055 \mu \mathrm{~F}$	-
$0.100 \mu F$	120 Hzt	FAST	. 05	0.5	-Co	099.45 to 100.55 nF	-
$1.000 \mu \mathrm{~F}$	Both	FAST	. 05	0.5	-Co	0.9945 to $1.0055 \mu \mathrm{~F}$	-
$1.000 \mu \mathrm{~F}$	Both	MEDIUM	. 05	0.2	-Co	0.9975 to $1.0025 \mu \mathrm{~F}$	-
$1.000 \mu \mathrm{~F}$	Both	SLOW	. 05	0.1	- Co	0.9985 to $1.0015 \mu \mathrm{~F}$	0010
$0.500 \mu \mathrm{~F}$	1 kHz	SLOW	. 05	0.1	$-\mathrm{Co}$	0.4992 to 0.5008 μ F	. 0010

[^10]FREQUENCY - 1 kHz
MEASURE MODE - CONT
HOLD RANGE - autorange
Parameter-C/D
Units selected $-\mu F$
EXTBIAS - OFF.
b. Refer to. Table 5-6, After making the sequence of key. strokes (using the appropriate limit entry keys) shown under "Entry," verify that the Digibridge numerical displays are like the numbers tabulated in the same row of the table under "Displays." Make all entries as tabulated; this is part of the setup for later procedures.

Table 5-6
ENTRY OF LIMITS

Entry	PLC Display	$\begin{gathered} \text { DO } \\ \text { Display } \end{gathered}$
(none)	(biank)	(blank)
l.] [5] [m] [NOM VALUE]	. 49999	(blank)
[.] [0] [0] [1] [=] [BIN No.] [0]	(blank)	. 0010
[1] [\%][=] [BIN No.] [1]	. 50499	. 4949
[2] [\%] [=] [8\|N Non] [2]	. 50999	. 4899
[3] [\%] [\#] [BIN No.] [3]	. 51499	. 4849
[4] [\%] [=] [BIN NO.] [4]	. 51999	. 4799
[5] [\%] [=] [BIN No.] [5]	. 52499	. 4749
[6] [\%] [=] [BIN No.] [6]	. 52999	. 4699
[7] [\%] [$=1$ [81N No.] [7]	. 53499	.4649
[8] [\%] [-] [BIN NO.] [8]	. 53999	. 4599

c. Select on the Digibridge:

DISPLAY - VALUE.
Verify that the GO light is on. (The RLC and DO displays should be within the extremes given in Table 5-5, as checked previously.)
d. Select on the Digibridge: DISPLAY - BINNo.
e. Refer to Table 5-7. For each setting of the capacitance standard, verify that the DQ display is blank, the bin (RLC) display is a single digit as tabulated, and the GO/NO-GO lights work as tabulated.
f. Select on the Digibridge: DISPLAY - ENTER LIMITS.
g. Make the following entry (as in step b): [=] [NOM VALUE].
Verify that the RLC display is five zeroes.
h. Select on the Digibridge: DISPLAY - VALUE
Notice that the RLC and DO displays are normal (last entry in Table 5-5). Verify that both of the GO/NO-GO lights are off.

1. Select on the Digibridge: DISPLAY - BIN NO.
Verify that both RLC and DO displays are blank.
j. Select on the Digibridge: DISPLAY - ENTER LIMITS.

Tabie 5.7 BIN ASSIGNMENT CHECK

DUT (μF)	GO/NO-GO	Bin Display
0.5000	60	1
0.5057	60	2
0.5107	60	3
0.5157	60	4
0.5207	60	5
0.5257	60	6
0.5307	60	7
0.5357	60	8
0.5407	NO-60	9
0.0000	NO.60	60

Check that each of the 7 unit indicator lights is function. ing, in the RLC display area, as follows. Repeatedly depress the R/Q key for the 3 resistance units, the L/O key for the 2 inductance units, and then the C/D key for the 2 capacitance units. Be sure the last parameter key to be used is C/D.

5.5.6 Capacitance Measurement Accuracy (Large C).

Continue the procedure as follows:
a. Confirm or select measurement conditions as histed:

DISPLAY - VALUE (new condition)
MEASURERATE - SLOW
EQUIVALENT CIRCUIT - SERIES (new condition)
FREQUENCY - 1 kHz
MEASURE MODE - CONT
HOLD RANGE - autorange
Parameter - C/D
EXTBIAS-OFF.
b. Remove the decade capacitor and connect the 4 . terminal $1-\mu \mathrm{F}$ capacitance standard (GR $1409-\mathrm{Y}$) as follows. This standard should be certified to an accuracy of $\pm, 03 \%$, including aging effects.

RED, $1+$: capacitor H binding post
RED \& WHITE, P+: capacitor H banana plug BLACK, I--: capacitor L binding post
BLACK \& WHITE, P-: capacitor L banana plug BLACK \& GREEN, G: capacitor G.
c. Verify that the RLC display agrees with the certified value of the standard (corrected for temperature if appropriate) within $\pm .0013 \mu \mathrm{~F}$ i.e., within the sum of $.03 \%$ for the standard and 0.1% for the Digibridge. See Table 5-8, Ine 1. Calculate the difference D1 = (displayed measurement) (value of standard), for future use. Units of D1 are $\mu \mathrm{F}$.
d. Remove the 1 - μF standard and connect the 4 -terminal ratio-type capacitance standard (GP 1417) as follows. Be sure the de blocking capacitor is fully discharged before connecting it. Notice that only the lefthand terminals of the standard are used.

RED, $1+$; t end of blocking capacitor ($500 \mu \mathrm{~F}$);
other end to capacitance standard, CURRENT H
RED \& WHITE, Pt: standard, POTENTIAL H
BLACK, 1-: standard, CURRENT L

BLACK \& WHITE,P-: standard, POTENTIAL L
BLACK \& GREEN, G: standard, uninsulated terminal.
e. Set the dials on the capacitance standard thus:

TEST FREOUENCY - 1 kHz
CAPACITANCE - $1 \mu F$.

NOTE

For detailed information on the GR 1417 4 Terminal Capacitance Standard, refer to its instruction manual.
f. Read the RLC display, which should be close to $1 \mu \mathrm{~F}$. Calculate the difference $\mathrm{D} 2=(1.0000 \mu \mathrm{~F})$-displayed measurement. Units of D2 are uF. The DO display should show $D=.0085$ to 0.0115 .
g. Calculate the callbration factor K as follows: $K=D 1+D 2$.
Example. In step c, the display is 1,0012 , the standard is 1.0006 ; then $\mathrm{D} 1=+.0006 \mu \mathrm{~F}$. In step f , the nominal is 1.0000, the display is 1.0024 ; then $\mathrm{D} 2=-.0024 \mu \mathrm{~F}$. The factor K is therefore -.0018 (no units required).
h. Reset the capacitance-standard dial to:

CAPACITANCE - $10 \mu \mathrm{~F}$.
Read the PLC display and correct it by adding $10 K$. (For example, if display is $10.023 \mu \mathrm{~F}$, corrected measurement $[$ for $K=-.0018]$ is $10.005 \mu F$.) Verify that the corrected measurement is within the acceptable extremes of Table 5-8, line 2.
i. Resetting the capacitance standard and Digibridge frequency, as indicated, continue to line 3 in the table. Verify results as above.
j. Set the Digibridge frequency thus: FREQUENCY - $120 \mathrm{~Hz}($ (or 100 Hz).
Repeat steps b and c. (See line 4 of table.) Also determine a new value of D1 for this frequency.
k. Repeat step d and set the capacitance-standard dials as follows, (Choose frequency to agree with Digibridge.)

TEST FREQUENCY - 120 Hz or 100 Hz CAPACITANCE - $1 \mu \mathrm{~F}$.
I. Repeat steps f and g, determining a new value of K for this frequency. (Call it K^{\prime}.)
$\mathrm{m}_{\text {. }}$ Continue down Table 5-8, making the settings, calculations, and verfications indicated there.

5.5.7 D-Measurement Accuracy.

Figure 5-1.
Verify D-measurement accuracy with the following procedure. Dissipation factor checks will be made using both series and parallel equivalent circuits, with corresponding connections of resistance and capacitance standards.
a. Using the extender cable and plain bus wire, connect the decade R and C standards in series, as DUT to the Digibridge, as shown in the diagram and tabulated below. (Use adaptors on the coaxial connectors, as before.)

> RED, it: stack on $P+$
> RED \& WHITE, Pt: resistor H

Table 5.8
CAPACITANCE ACCURACY CHECKS

Stancard as DUT*	Test Frequency	Typical Standard Accuracy (\%)	Digibridge Accuracy (\%)	Correction	Corrected C Display Acceptable Extremes	DO Display Acceptable
$1.000 \mu \mathrm{~F}$	1 kHz	. 03	0.1	-	$\pm .0013 \mu \mathrm{~F}^{*}$	-
$10.00 \mu \mathrm{~F}$	1 kHz	.07	0.1	$+10 \mathrm{~K}$	09.983 to $10.017 \mu \mathrm{~F}$. 0085 to 010115
100.0 jF	1 kHz	. 07	0.1	$+100 K^{\prime}$	999.83 to $100.17 \mu F$. 0085 to. 0015
1.000 HF	120 Hzt	. 03	0.1	-	$\pm .0013 \mu F^{*}$	-
$10.00 \mu \mathrm{~F}$	120 Hzt	. 05	0.1	$+10 k$	09.985 to $10.015 \mu \mathrm{~F}$. 0085 to 0.0115
$100.0 \mu \mathrm{~F}$	120 HzT	. 05	0.1	$+100 \mathrm{~K}^{\prime}$	999.85 to 100.15 $\mu \mathrm{F}$. 0085 to.0115
1.000 mP	120 Hzt	. 05	0.1	$+1000 \mathrm{~K}^{\prime}$	9998. 5 to $1001.5 \mu \mathrm{~F}$. 0085 to.0115
10.00 mF	120 Hzt	. 06	0.5	10000 K	9944.0 to 10056 HF	.0065 to 0135

* Acceptable display is certified value of standard, plus or minus the tolerance given.

T120 Hz or 100 Hz , depending on model of Digibridge.

BLACK, 1-: stack on P-
BLACK \& WHITE, P-: capacitor L, center
BLACK \& GREEN, G: resistor G, capacitor H side post, and capacitor L side post (suitably con nected together with alink and/or bus wirel.
Also connect with a short jumper from resistor L to capacitor H, center post.
b. Confirm or select measurement conditions on the Digibridge thus:

```
DISPLAY - VALUE
MEASURE RATE - SLOW
EQUIVALENT CIRCUIT - SERIES
FREOUENCY - 120 Hz (100 Hz)
MEASURE MODE - CONT
HOLD RANGE - autorange
Parameter - C/D
EXT BIAS - OFF.
```

c. Set the resistance and capacitance standards to the values given in line 1 of Table 5-9. Verify that the DO display is within the range given, inclusive. (Notice that the C-standard value depends on the test frequency of your particular model.)
d. Continue down the table, verifying each line. Because the capacitance in the series equivalent circuit is different from the decade capacitor setting when the series resistance is large, use the RLC readout to indicate capacitance in those lines of the table.
e. Reconnect the standards in parallel as shown in the diagram and change the Digibridge measurement conditions as follows:

```
EQUIVALENT CIRCUIT - PARALLEL
    FREOUENCY - 1 kHz.
```

f. Verify the D accuracy, as before, by following Table 5-10. Notice that the $1658-9700$ (which has 120 Hz for its lower test frequency) actually tests at 1020 Hz , whereas the $1658-9800$ tests at 1000 Hz ; hence the different requirements for capacitance in the table.

Figure 5-1. Series and parallel connections of standards for D accuracy checks.

Table 5-9
SERIES-CIRCUTT D-ACCURACY CHECK

Resistance Standard	$\begin{aligned} & \text { Capacitance } \\ & (120 \mathrm{~Hz}) \end{aligned}$	Standard $(100 \mathrm{~Hz})$	DQ Display (Min to Max)
50Ω	$0.1326 \mu F$	$0.1592 \mu \mathrm{~F}$.0045 to . 0055
100Ω	same	same	. 0095 to. 0105
500Ω	same	same	. 0494 to. 0506
$1 k \Omega$	same	same	. 0994 to . 1006
5 kd	same	same	. 4987 to. 5013
$10 \mathrm{k} \Omega$	same	same	. 9975 to 1.003
$50 \mathrm{k} \Omega$	reset*	reset**	4.969 to 5.031
$90 \mathrm{k} \Omega$	reset**	reset*	8.909 t0 9.091

* Reset the capacitance standard to obtain, on the RLC readout, the tabulated capacitance.

Table 5-10
PARALLELCIRCUIT DACCURACY CHECKS

Resistance Standard	Capacitance Standard$(-9700) \quad(-9800)$		Do Display (Min to Max)
1 Ma	31.22 nF	31.84 nF	. 0045 to . 0055
$500 \mathrm{k} \Omega$	same	same	. 0095 to. 0105
$100 \mathrm{k} \Omega$	same	same	. 0494 to. 0506
$50 \mathrm{k} \Omega$	same	same	. 0994 to. 1006
10ks	same	same	. 4987 to . 5013
$5 \mathrm{k} \Omega$	same	same	.9975 to 1.003
$1 \mathrm{k} \Omega$	same	same	4.969 to 5.031
500Ω	same	same	9.889 to 10.11

5.5.8 Inductance Measurement Accuracy.

Verify the accuracy of inductance measurements, as follows.
a. Using the extender cable, connect the $100-\mathrm{mH}$ inductance standard as DUT, thus: RED, It: stack on P4 RED \& WHITE, P+: inductor HIGH BLACK, I-: stack on PBLACK \& WHITE, P-: inductor LOW BLACK \& GREEN, G: inductor case (ground).
b. Confirm or select measurement conditions on the Digibridge as follows.

DISPLAY - VALUE MEASURE RATE - SLOW EQUIVALENT CIRCUIT - SERIES FREQUENCY - $120 \mathrm{~Hz}(100 \mathrm{~Hz})$ MEASURE MODE - CONT HOLD RANGE - autorange Parameter - L/Q.
c. Verify that the RLC display is within $\pm 0.10 \mathrm{mH}$ of the certified effective $100-\mathrm{Hz}$ series inductance of the standard.
d. Calculate the low-frequency Q of the standard inductor as follows;

$$
\mathrm{O}=6.2832 \mathrm{fL} / \mathrm{R}
$$

where f is the measurement frequency, L is the certified series inductance, and R is the de resistance, also given on the certificate. (Notice that the $100 \cdot \mathrm{~Hz} \mathrm{O}$ is given on the certificate; but not the $120 \cdot \mathrm{~Hz}$ O.)
e. Verify that the DO display is within $\pm .0114$ of the calculated low-frequency Q.
f. Change test frequency as follows: FREQUENCY -1 kHz .
g. Verify that the RLC display is within 0.10 mH of the certified effective $1000-\mathrm{Hz}$ series inductance of the standard.
h. Calculate the high-frequency Q of the standard inductor using the above formula and the present test frequency.
i. Verify that the DO display is within $\pm .078$ of the calculated high-frequency 0 .

5.5.9 Zero Capacitance.

Check the "zero" or residual capacitance in the Digibridge and its test fixture as follows.
a. Remove the extender cable from the Digibridge.
b. Confirm or select the measurement conditions thus:

DISPLAY - VALUE
MEASURE RATE - SLOW
EOUIVALENT CIRCUIT - SERIES
FREQUENCY -1 kHz
MEASURE MODE - CONT
HOLD RANGE - autorange
Parameter - C/D (new condition).
c. Verify that the RLC display is less than, 002 nF (i.e. 2 pF).

5.6 DISASSEMBLY AND ACCESS.

WARNING

If disassembly or servicing is necessary, it should be performed only by quallified personnel familiar with the electrical shock hazards inherent to the high-voltage circuits inside the cabinet.

CAUTION

Observe the following precautions whenever you handle a circuit board or integrated circuit in this instrument.

HANDLING PRECAUTIONS
 FOR ELECTRONIC DEVICES

SUBJECT TO DAMAGE BY STATIC ELECTRICITY

Refer to page $5-0$ for detalls. The following integrated circuits are known to require these precautions.

1658-4700: MB-U2, U3,-U4, -U6,
-U8, -U19 through -U24, -34 through
-U37, -U41, -U42, -U45, -U46, -U52,
-U53. 1658-4715: DB-U47 through
-U55.
Notice that it is safe to assume that all circuits in this instrument are subject to damage by static electricity, and observe the precautions always.

5.6.1 Disassembly.

Use the following procedure for access to replaceable parts and contact points used in trouble analysis.
a. Disconnect the power cord.
b. Remove the top-cover screws from the rear panel of the main chassis. See Figure 1-2. Slide the top cover forward about 6 mm so that its front comers are unhooked. Lift it directly upward (Figure 5-2). Reassembly note: 2 screws, 13 mm long.

The next step, removal of display board, is recommended (though not absolutely necessary) before removal of the main circuit board.
c. Remove the 2 support screws, at left and right, that hold the display board to its brackets. (See Figure 5-2.) Pull the board directly out of its socket in the main board. Keep the display board in its original (inclined) plane until

Figure 5-2. Removal of tor cover. Items I and 3 are screws that hold the display baard. Item 2 is ribbon cable $1657-0200$ that connects power supply to main board.

Figure 5-3. Removal of the display board.
it is completely free (Figure 5-3). Reassembly note: 2 screws, 6 mm long with washers.
d. Remove the ribbon cable (1657-0200) from power supply (at $\mathrm{V}-\sqrt{ } 1$) and main board (at MB-J5). Notice that the connectors are symmetrical and reversible; and the cable is extra long, for convenience in servicing.

The next step, removal of the power supply, is NOT related to the removal of the main board. Either can be left in place while the other is removed.
e. Remove the 4 screws that pass vertically through the 4 corners of the power supply into the main chassis. Lift the power supply slightly and move it back carefully while disengaging the POWER pushbutton extension from its hole in the front panel (Figure 5-4). Reassembly note: 4 screws, 8 mm long.
f. Remove the interface option, if you have one, after removing the 2 large screws with resilient washers in the rear panel. (If the panel held by these screws is blank, leave It in place.) Reassembly note: align board edges carefully with connector and guide that are inside of instrument, while pushing interface option into position.

Figure 5.4. Removal of the power supply. The sibbon cable must be disconnected first. The display board can be lett in place, but has been removed in this picture

Figure 5-5. Removal ot the bottom shell. The top cover has bean temporarily installed as a support.
g. Provide a convenient "upsidedown" support by reinstalling the top cover, temporarily, Turn the instrument, bottom up.
h. Remove 4 screws from the bottom shell, one near each rubber foot. Lift the instruction card and its retaining pan free. Slide the bottom shell back (or forward), free of the main chassis (Figure 5-5). Reassembly notes: Be sure to enfold the pliable dirt seals at left and right sides of main chassis as you start to slide bottom shell onto main chassis; use 4 screws, 8 mm long.
i. Remove 11 screws from positions shown in Figure 5-6 as A and B, to free the main board. Slide it forward so the bias connector can be lifted past the lip of the chassis. Figure $5-7$ shows how to tilt and rotate the main board to the best position for removal. Reassembly note: retum washers (if any) to original positions; screws at A are 6 mm , B are 8 mm long.
f. To remove the keyboard module, remove the 4 screws at D and carefully pull the module directly away from the main board. Reassembly note: be very careful not to bend

Figure 5-6. Locations of screws on the main board, bottom view. Screws at A and B hold the board to the chassis. Screws at C hold brackets for display board; D, the keyboard module; E and F, the test fixture guide block. All except F are accessed from this side.

Figure 5-7. Removal of the MB board. The ribbon cable must be disconnected first. Prior removal of the display board also is highly recommendec. Because the board is partially enclosed by the main chassis, some motions are necessary: to ward Iront, disengaging bias connector, thting, turning as show, and toward the rear.
pins when plugging the keyboard-module connectors into their main-board sockets.
k. Remove dross shield assembly separately if desired (or as part of guide block; see below). The shield can be removed by spreading the mid parts of the long sides slightly and lifting it off.

1. For access to the test-fixture contacts, remove the guide block $1657-2200$ (includes dross shield) by removing 2 screws E and 2 hex-socket screws F (.094-inch wrench) from opposite sides of the main board (Figure 5.6). Reassembly note: see para 5.7.1.
5.6.2 Access.

Figures $5-8,5-9$, and 510
Locations of principal interior parts and points of interest for trouble analysis are shown in the accompanying pictures. On the main board, the crystal oscillator U14 and DiP switch 5900 are identified, being the key components in alteration of the test frequencies. (By changing U14 and depressing the correct switch tabs, you can convert a $1658-9700$ functionally to a $1658-9800$, and vice versa. Detalls are tabulated on the schematic diagram. Also, refer to Table 5-13.)

Also on the main board, notice that the analog circuitry is placed along the front (torward of the display-board connector) and along the front half of the right-hand edge. Most of this board supports digital circuitry.

For a more complete guide to parts location, refer to Table 5-11. This lists the principal parts of the main (MB-) board and indicates where each one is shown on both board layout and schematic diagrams. The alphanumerics such as B4 or C6 are coordinates on the indicated figures in Section 6. The vertical coordinates are A to E (top to bottom), the horizontal coordinates are 1 to 8 (left to right).

5.6.3 Reference Designations.

Refer to Section 6 for an explanation of these designations. For example, VTI designates transformer number one in the power supply (V) assembly. MB-U3 is integrated circuit number 3 on the MB board, which is the analog and control board, often called the main board.

5.6.4 Removal of Muitiple-Pin Packages.

Use caution when removing a plug-in integrated-circuit or other multiple-pin part, not to bend pins nor stress the circuit board. Withdraw the part straight away from the board. Untess an 1 C is known NOT to be a MOS type, place it immediately on a conductive pad (pins in the pad) or into a conductive envelope.

DO NOT atempt to remove a soldered-in $1 C$ package unless you have the proper equipment and skills to do so without damage. If in doubt, return the board to GenRad.

5.7 PERIODIC MAINTENANCE.

5.7 .1 Care of the Test Fixturg.

About once a year (more or less depending on usage) the test fixture and its axiallead adaptors should be inspected and cleaned as follows:
a. Clean the contact surtaces and blades of the axiallead adaptors with isopropyl alcohol. Pub with a cotton swab (O-tip). Remove any remaining liquid alcohol by blowing with the breath and remove any remaining cotton fibers, with tweezers.
b. Remove the MB board and expose the text-fixture contacts by removing its guide block (part number 1657-2200), as described above. See Figure 5-6.

Figure 5.8. Main or MB board, top view. Functional conversion betweer 1658.9700 and $1658-9800$ involves replacement of precision oscillator and depressing switch tabs: locations indicated. Arrows A - A indicate approximately the area of analog circuitry.
c. Clean and check the 4 contact strips. Use a card wet with isopropyl alcohol for cleaning. Hold the board at an angle so that any drip falls away from the circuits.
d. If necessary, the contact strips (part number $1686-1940$) can be removed (2 screws apiece). In reassembly, observe the following. Align them, so both contact gaps are the same distance from the front edge of the board. The contact strips are supposed to press against each other, with tiny dielectric spacers preventing contact. Except at the ends of the gap (where the spacers are) the gap should be .05 to $0.2 \mathrm{~mm}(.002$ to .008 in ,) all along the gap.

When tightening the 8 screws that hold the 4 contact strips, use 12 inch pounds of torque. When replacing the guide block, be sure the slots are allgned with the gaps between contact strips, as verified by eye, looking directly down on the board. Guide-block screws are 8 mm long, with washers.

For best results and minimum maintenance effort, the operator must remove any obvious dirt from leads of DUT's before inserting them into the test fixture. Its contacts will wipe through a film of wax, but they can become clogged and ineffectual if the operator is careless about cleanliness.

5.7.2 Care of the Display Panel.

Use caution when cleaning the display window, not to scratch it nor to get cleaning substances into the instrument. Use soft cloth or a ball of absorbent cotton, moistened with

Figure 5.9. Power supply (V ascmby) and display or DS boark, showminthe fortriment, With top cover of
a mild glass cleaner, such as "Windex" (Drackett Products Co., Cincinnati, Ohio). DO NOT use a paper towel; do NOT use enough liquid to drip or run.

If it should be necessary to place marks on the window, use paper-based masking tape (NOT any kind of marking pen, which could be abrasive or react chemically with the plastic). To minimize retention of any gummy residue, remove the tape within a few weeks.

5.8 TROUBLE ANALYSIS.

5.8.1 General.

CAUTION

Only well qualified personnel should attempt trouble analysis. Be sure power is OFF during disassembly and setting up for tests. Carefully observe the HANDLING PRECAUTIONS given in para 5.6.

Resources. Refer to Section 4 for a good understanding of the theory of operation. The block diagrams and discussion there provide necessary background, which can generally save time in trouble analysis. Refer to Section 6 for hardware details: circuit layouts, schematic diagrams, and parts lists.

Abnormal digital signal levels. Most digital signal levels in this instrument are normally near zero (logic low), about +3.5 to +5 V (logic high), or rapidly switching between these states. Failure of a digital source often produces a dc voltage of about +2 V on a signal line. Use high-impedance probes in measuring. Use a scope as well as a voltmeter, because an average of 2 V may be normal for a digital signal that has a duty cycle near 50%.

Duplicated circuits. Some circuits, as in the display board for example, are duplicated several times. The IC's can usually be exchanged between a faulty circuit and a functional one, to identify a "bad" IC. Notice, also, that the resistor networks DB-Z2 . . DB-Z10 are simply compact packages of $220-\Omega$ resistors. If one resistor is open, it is not necessary to replace the entire package. Use a 5% resistor.

Circuit board replacement. Refer to para 5.3 for recommended procedures to obtain replacements.

Tel/tale symptoms. Scan the following group of symptoms for a preliminary analysis of trouble and suggestions for more detalled procedures if applicable.

Display. A perpetually blank digit or decimal point may be caused by a fault in the directly associated circuit on the display board. (Refer to comments above.)

D Error. A large D error may be caused by faulty "protection" diodes in the analog front end, Check MB-CR15 . . MB-CR26 (a total of 12 diodes).

Figure 5-10, Interface option assembly 1658-4020, including the interface option beard (IOB) $1658-4720$.
Reactance Error. If R measurements are accurate but C (and L) measurements are not, the test signal source may be at fault. In checking it, as in the following paragraph.

Table 5-1
MB - - BOARD PARTS LOCATIONS

Paxt	Layout*	Schematic**		Part	Layout*	Schematic**	
31	D4	6.8	05	018	C5	6-3	E3
\cdots	-	6-9	E-	019	C4	6.5	86
12	A5	6-7	01	-	-	6-5	D2
13	D 1	6.9	07	U20	84	6-7	E6
-	--7	6.9	E-	--	-	6.5	A6
14	07	6.5	3,5	U21	B4	6.8	C6
J5	86	6-5	E1	U22	83	6-8	B5
16	E4	6.5	B1	-	-	6-7	E4
17	A 7	$6-5$	31	U23	B2	6-8	B3
				--..	-	6-7	E3
$k 1$	$E 2$	6.5	82	U24	B2	6-7	E2
K2	E2	6 -5	C2	-	-	6-9	Ab
				U25	81	6-9	B6
Q1	B1	6.7	B2	U26	B1	6.9	C6
02	02	$6-5$	D3	U27	C1	6-9	C5
03	D2	6.5	D3	U28	Cl	6-9	63
04	E3	$6 \cdot 5$	A2	U29	C 2	6-9	B6
ab	E2	6-5	D3	U30	C 2	6-8	D2
06	E2	$6 \cdot 5$	C3	U31	C3	6-8	C3
				U32	C3	6-8	C4
5900	85	6-3	87	U33	C4	6-8	C5
S901t	B5	6 -3	85	U34	c5	6-5	C6
				U35	C5	6-5	B7
U1	A1	6-7	A4	U36	C6	$6-5$	C7
U2	A2	6.7	87	U37	C7	6-5	D7
U3	A2	6-7	85	U38	D7	6-5	D5
U4	A3	6.7	84	-	-	-	D7
U5	A1	6-7	A3	439	C6	6-3	D4
U6	B2	$6-7$	E7	U40	D6	6 -3	D5
U7	A 4	6.7	B3	U41	C5	6-3	E5
48	84	6-3	C4	U42	D5	6-3	D6
-	-	6 -3	D1	U43	DA	6-5	D4
U9	B5	6-3	C5	U44	D3	6-3	D7
U10	B5	$6-3$	D3	U45	E3	6-5	E2
U11	B6	6-3	D3	U46	E3	6-5	D5
U12	B6	6-3	85	U47	03	6-9	C4
U13	86	$6-3$	B3	U48	D2	6-5	C 1
U14	A6	6-3	B1	U49	D2	6.9	C 2
U15	87	6-3	B3	U50	D1	6.9	C1
U16	87	$6-9$	85	U51	E1	6.5	E3
-	-	$6 \cdot 3$	C6	U52	E2	6.5	D2
417	c7	6-3	B5	U53	A2	6-7	C5

*See Figure 6-4 for physicallocation.
**See indicated figure, 6-3, 6-5, 6-7, 6-8, or 6-9, for location on schematic diagram.
Not present on standard models. Used on special models with non-standard test frequencies,
verify that the frequency is within $\pm 0.01 \%$ of the specified "actual" frequency. (See front of manual.)

Test Signal. To check performance of the test-signal source, use a scope to look at the open-circuit signal at the It terminal of the test fixture (right front contact - be sure there is no DUT). The signal should be an undistorted sine wave at the selected frequency, amplitude about 0.65 V pk-pk $(\pm 15 \%)$ on each range. If this is correct, skip over para 5.8.3.

Analog Front End. To check the entire analog front end, verify that the signal at MB-U3 pin 12 has the characteristic staircase/sawtooth waveform illustrated in para 5.8 .4 , while the instrument is measuring a DUT. If this is true for all
modes (EQUIVALENT CIRCUIT, FREQUENCY, parameter $R / Q, L / Q$, and $C / D)$, skip to para 5.8.6. Otherwise, check the test signal at the test fixture as outlined above.

Introduction to Detailed Analysis. The following trouble analysis procedures will serve as a guide for localizing a fault to a circuit area. In some cases, a specific component part can be isolated for replacement. In other cases, the problem can be narrowed down only to a circuit board.

Except for the short-cuts indicated above, follow the procedure strictly in the order given, doing the principal steps (a, b, c, d, \ldots) until a failure is found. If so, follow the secondary steps, if any are given at the point of fallure ($a \mathrm{a}, \mathrm{ab}, \mathrm{ac} .$.).

5.8.2 Power Supply.

Check the power supply (V assembly) if there is a massive failure (nothing works) or as a starting procedure in any thorough analysis. Refer to Figure 5-9.

NOTE

If a voltage regulator (U1, U2, or U3) must be replaced, be sure to spread silicone grease (like Dow Corning compound no. 5) on the'surface toward the heat sink. For U1, coat both sides of the insulating washer.
a. Check the output voltages, using a digital voltmeter, with ground reference at $V-J 1$, pin 9 (ribbon cable unplugged), as follows:

$$
\begin{aligned}
& \operatorname{Pin} 1=+5 \mathrm{~V} \\
& \operatorname{Pin} 3=+5 \mathrm{~V} \\
& \operatorname{Pin} 4=-8 \mathrm{~V}
\end{aligned}
$$

b. Make a check similar to step a, with ribbon cable connected, ground reference at right edge of $M B$ board, probing MB-J5 from below the board. (This checks for overload outside the power supply.)

5.8.3 Sinewave Generator.

Check the MB-board circuits that supply the test signal to the DUT, as follows: (We proceed backward, to the precision oscillator, then forward through dividers and sinewave generator.)
a. Make the following test setup and keyboard selections:

DUT: $0.1 \mu \mathrm{~F}$ and $3 \mathrm{k} \Omega$, connected in series.
MEASURE RATE - SLOW
EQUIVALENT CIRCUIT - SERIES
FREQUENCY - 1 kHz
Parameter -- C/D.
b. Verify that the signal at test fixture, + side (right hand), is a $1-\mathrm{kHz}$ sine wave, 490 mV pk-pk. Use an oscilloscope.
aa. If trouble is found at step a, check " +5 V " circuit: At outputs of U_{1} and $U_{2} 2+5 \mathrm{~V}$ de (regulated). At WT1 (inputs of U1 and U2): +10.8 Vdc .
Across input to diode bridge (yellow-to-yellow): 10 Vrms .
ab. Check "-8 V" circuit:
At output of U3: -8 V dc (regulated).
At input (center terminal) of U3: -13.8 V dc.
Across WTT to WT8: 11.3 V rms.
ac. Check power-line circuit to primary of transformer V-T1.
ba. If this signal is distorted or missing on all ranges, but present at MB-U42 pin 2 or $J 4$ pin 5 , check diode network MB-CR19...-CR23. To change ronge, select ENTER as FUNCTION and press the CS/D key one or more times.
c. If no fault appears in steps a, b, skip to para 5.8.4.

NOTE

The prefix "MB-" is omitted in the following text, where it is not necessary for clarity.
d. Verify that "1.4 V RMS TEST SIGNAL" found at U42 pin 2 is a $1-\mathrm{kHz}$ sine wave, approx 4.0 V pk-pk ($\pm 10 \%$).
e. Check at U42 pin 6 for a $1-\mathrm{kHz}$ sine wave, 4.0 V pk-pk.
f. Verify that the output of $U 40$, found at $J 4$ pin 10 is a $1-\mathrm{kHz}$ sine wave, $4.0 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$. (A "noisy" waveform is normal.)
g. Remove $\cup 40$. Connect a $200-\Omega$ resistor across its socket between pins 2 and 3 . (Note; if the resistor leads are about $0.5 \mathrm{~mm}[0.02 \mathrm{in}$.] in diameter, they will fit the socket directly.) Check at U39 pin 4 for a $1-\mathrm{kHz}$ sine wave, $0.4 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$. If this is verified but step f is not, faut is in U40. If neither is verified, reinstall U40 and continue.
h. Check that each input to the D/A converter U39 (pins 5 . . . 12), is a digital signal, about 4 V pk-pk. Each of these 8 signals should repeat with a period of 1 ms .

If these digital signals are NOT correct, continue the analysis by checking the crystal oscillator and divider chain, as follows.

NOTE

Dual specifications of frequency appear below. The first frequency is correct for $1658-9700$ (the $120-\mathrm{Hz}$ version). The second is correct for $1658-9800$ (the $100-\mathrm{Hz}$ version). Frequency tolerance is $\pm 0.01 \%$.
i. Make the following test setup. Connect from the scope vertical-channel output to a counter. Be sure to use a low-capacitance probe at the scope input, so as not to load the high-impedance circuits being analyzed.
j. Oscillator. Check at U15 pin 14 for a fast digital waveform (see schematic diagram) of the following frequency: 25.067 or $24.576 \pm 0.003 \mathrm{MHz}$. If correct, skip to step k. If oscillator signal is not verified, U14 is faulty.
k. Check at U15 pin 8 for a nolsy square wave, 4 V pk-pk, 2.0889 or 2.0480 MHz . Otherwise, 415 is faulty.

1. Check at U13, pins 1 and 8 for pulses (essentially rectangular), with frequencies as follows:

Pin $1,1.0445$ or 1.0240 MHz .
Pin 8, 261.12 or 256.00 kHz .
Otherwise, U13 is faulty.
m . Check at U12 for similar pulses, with frequencies as follows:

Pin 12, 522.24 or 512.00 kHz .
Pin $9,276.00$ or 216.12 kHz .
Pin $8,122.80$ or 156.00 kHz .
Pin 11, 61.44 or 78.00 kHz .
ea. Check at U42 pin 3 for a $1-\mathrm{kHz}$ sine wave, 3.4 V pk-pk. If this is verified but step e is not, isolate the fault to U42 or to U44.
ha. If these inputs are verified but step g is not, fault is in $U 39$ circuit. Check at the end of R 46 closer to the test fixture for +3 V dc; if that is correct, replace U39. Otherwise, fault is in associated circuit.
n. Check at U17 pin 9 for a 5 V pk-pk rectangular wave, with frequency of 30.72 or 26.11 kHz . Otherwise, U17 is faulty.
o. Check at UQ pin 8 for a square wave, 5 V pk-pk, at 261.12 or 256.00 kHz .

NOTE

Servicing the digital circuitry, such as that "behind" FREQ SEL, is beyond the scope of this manual. Swapping identical PIA's may be informative; refer to para 5.8.1.
p. While monitoring U9 pin 8, press the FREQUENCY key and select 120 Hz , (or 100 Hz). Check that the monitored signal (which should always be 256 times the test frequency) is now 30720 Hz or 25600 Hz . Again press the FREQUENCY key and select " 1 kHz ."
q. Check that the outputs of U18 are square waves, 5 V pk-pk, with frequencies as follows (for $1658-9700$ or $1658-9800$ respectively). Otherwise, U18 is faulty.

Pin $12,130.56$ or 128.00 kHz .
Pin $9,65.28$ or 64.00 kHz .
Pin 8, 32.64 or 32.00 kHz .
Pin 11, 16,32 or 16.00 kHz .
r. Check U10 similarly. (Otherwise U10 is faulty.)

Pin 12, 8,160 or 8.000 kHz .
Pin $9,4.080$ or 4.000 kHz .
Pin 8, 2.040 or 2.000 kHz .
Pin $11,1.0200$ or 1.0000 kHz .
s. If inputs to the sine rom U11 are valid (steps i . . . r) but its output is not (steps a... h), U11 is faulty; or possibly (because step h does not check the output code from U11) U39 may be faulty. They can be checked against their manufacturer's data sheets.

5.8.4 Front End Amplifiers and Switches. Figure 5-11.

Check the MB-board analog circuits that process the measurement signals from the test fixture to the point of A/D conversion, as follows.

NOTE

When it is necessary to access parts under the keyboard, select the desired measurement conditions (usually including CONT MEASURE MODE), and then remove the keyboard module as described above. Connect temporarily from the right end of R68 to the front end of C21 or plug in a temporary jumper of AWG No. 20 wire between pins 5 and 6 of MB-J6. Carefully plug the module into its connectors again whenever the procedure requires keyboard operation.
a. Verify that there is a normal test signal at the test fixture. (See para 5.8 .1 or para 5.8 .3 step b.)
oa. If step o is not confirmed, be sure you have selected 1 kHz on the front panel. Check that FREO SEL (U9 pin 1) is logic high. (Otherwise check back to U20 pin 39.) ob. If those checks are confirmed, fault is in the gates, U9.

Figure 5-11. Integrator output waveform for the conditions of para 5.8.4: VALUE, SLOW, SERIES, 1 kHz , CONT, R/O, autorange; DUT is 1Ω. The waveform repeats every 570 ms , including 16 staircases, for a complete measurement cycle. The expansion, B_{1}, shows typical detail in the first 2 staircases. Each staircase has 17 or 20 steps. For details, refer to Table $5-13$.
b. Check the range switching circuitry as follows, Insert as DUT each of the following resistors; and check for a $1-\mathrm{kHz}$ sine wave with a scope connected to the + (right) end of each DUT in tum:
1Ω; test signal should be 60 mV pk-pk
$1 \mathrm{k} \Omega ; 330 \mathrm{mV}$ pk-pk
$1 \mathrm{MS} ; 580 \mathrm{mV}$ pk-pk.
c. Install a $1 k-\Omega$ resistor in the test fixture. Check the $\mathrm{P}+$ circuit at U43 pin 1, for a $1-\mathrm{kHz}$ sine wave, 350 mV pk-pk.
d. Check part of the 1 - circuit at $U 43$ pin 10 , for a $1-\mathrm{kHz}$ sine wave, 330 mV pk-pk.

Tabie 5.12
SOURCERESISTOR PANGE SWITCHING CHECKS

DUT	K1,(1-4)	K2,1-4)	U48pin 10	U48pin 8
1Ω	open	closed	high	low
1 k 2	closed	open	low	high
1 M 2	open	open	high	high

ba. If discrepancy is found in step b, check for continuity through relays $K 1, K 2($ pin 1 to pin 4) and for their control signals, as shown in Table 5-12.
ca. If there is a discrepancy in step c, but U43 pin 3 has a 330 mV pk-pk sine wave, then U43 is faulty.
da. If discrepancy in step d, check at U52 pin 14 for a $1-k H z$ sine wave, 330 mV pk-pk; and at pin 10 for a logic high (+5 V).
db. Check U52 pins 12, 15 for presence of signal. If the signal is correct at pin 15 but missing at 12 , check 05, 06, and associated circuit, or U52.
dc. Conversely, if the signal is correct at pin 12 but missing at pin 15 , replace $U 52$.
dd. If both signals at U52 are correct, check at U51 pin 3 for a 1-kHz sine wave, $360 \mathrm{mV} p k-p k$. If discrepant, check U45 pin 6: replace U45.
e. Check at U43 pin 8 for a $1-\mathrm{kHz}$ sine wave, 330 mV pk-pk. Otherwise U43 is faulty.
f. Exchange the DUT for a $1-\Omega$ resistor. Check the output of the signal selector, U46 pin 13 for a $1-\mathrm{kHz}$ switched sine wave, 580 and 60 mV pk-pk levels.
g. Check at output of differential amplifier U38 pin 1 for a $1-\mathrm{kHz}$ switched sine wave, 4 V and $0.4 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$, or somewhat larger. The ratio should be 10 to 1 .
h. Check the integrator output at U38 pin 12 (or the front end of C38) for the staircase waveform shown in the accompanying figure. Notice that there are 17 steps for the 1658-9700, but 20 steps for the 1658-9800, if the test frequency is " 1 kHz ." The amplitudes of the staircases depend on the range as well as the impedance components of the DUT. For details, refer to Table 5-13.

The waveform is more easily stopped on the scope if the chosen conditions make one staircase taller than the others. Careful setting of scope trigger adjustment is usually required, preferably on the positive slope, at a low voltage, near the negative peak.

Table 5-13

FREQUENCY SELECTION AND VARIOUS CHARACTERISTICS OF STANDARD MODELS

Characteristic	-9700	-9800
Hi-f"1 $\mathrm{kHz}^{\prime \prime}$	1020 Hz	1000 Hz
Lofis "120 Hz"	120 Hz	100 Hz
Crystal f (MHz)	25.0675	24.576
Rejected frea	60 Hz	50 Hz
DIP switch, set:		
S900, 1	-	-
5900, 2	ON	OFF
5900, 3	OFF	ON
S900,4	OFF	OFF
S900, 5	ON	ON
S900,6	OFF	ON
Steps* for Hi-f:	17/17/8	20/20/10
for Lo-f:	2/2/1	2/2/1
Staircases**	$16 / 8 / 5$	16/8/5

[^11]
5.8.5 Control Signal Checks.

Figures 5-12, 5-13.
If there is no staircase waveform at the integrator output, in the phase-sensitive detector, as described above, use the following procedure to determine whether the faut is in the digital control circuitry.
de. Check at U51 pin 8 for a $1-k H z$ sine wave, 360 mV pk-pk. If discrepant, fault is in U51.
df. Check at U52 pin 13 for a $1-\mathrm{kHz}$ sine wave, 330 mV pk-pk. If discrepant, check C50, U43, and U52 for loading or an open circuit.
fa. If discrepancy in step f, check the digital signal SSW1 at U46 pin 10 (or 11 pin 57, display-board connector). It should be a slow rectangular wave, switching between 0 and +4 V . Refer to timing diagram, below.
ga. Otherwise, using a $X 10$ scope probe with a short connection to ground, check at U38 pin 2 for a switched sine wave, 30 and 10 mV pk-pk. Check pin 3 similarly. If these verified but not step g, U38 is faulty.
ha. If step h is not verified, check at detector-switch control terminals $\cup 37$ pins $5,6,12,13$ for the presence of digital signals with logic high and low levels of +5 V and -8 V . If all of these signals are present, either U37 or U38 is faulty; replace both of them. Otherwise, check the quad flip-flop U34. Also, refer to para 5.8.5.
a. Examine the frequency synchronizing signals, which should all be similar except for frequency (differing by factors of 2): F, 2F, 4F, $8 F$ at U20 pins $2,3,4,5$. If there is a fault, check the circuit of U10.
b. Look at the following control signals with a scope and compare them with the timing diagram:

PBST, at U20 pin 12,
PMSR, at U20 pin 20.
If they are normal, skip to step c . If they are inactive, perhaps they can be stimulated by applying pulses to the power-on reset circuit; see step ba.
c. Examine each of the following digital feedback signals and compare it with the timing diagram. If any one is questionable, check the circuit from which it is derived: MSR, at U34 pin 10 and its converse $\overline{\text { DMSR, at U20 }}$ pin 40 (from PMSR).

DONE; at U36 pin 6 (comment follows).
Notice that DONE is normally a negative pulse that starts with the rising edge of CMP and very quickly terminates, when $\overline{R E L}$ drops to "low." (CMP stays high for a variable length of time.) However, if reset pulses are being provided as in step aa, and CMP is low, then DONE is trig. gered by $\overline{R E S}$.
d. If the digital feedback signals are present, look at each of the following control signals and compare it with the timing diagram: (The first 5 signals have logic low and high levels of 0 and +5 V ; the last 6 signals, -8 and +5 V .)

PBST, at U19 pin 6;
PISW, at U19 pin 4;
PMSR, at U19 pin 2;
$\overline{R E S}$, at $U 35$ pin 8 (reset, normally only at power-up);
SSW1, at U20 pin 14;
Clock at U34 pin 9 (from 8F, at U35 pin 6);
DONE, at U34 pin 1;
BST, at U37 pin 12 (clocked by 8F, enabled by PBST);
$\overline{\text { BST, }}$, at U37 pin 13 (clocked by $8 F$, enabled by PBST);
MSR at U37 pin 6 (clocked by 8F, enabled by PMSR);
ISW, at U37 pin 5 (clocked by $8 F$, enabled by PISW).
If any is abnormal, trace back to the source of the sig-
nal, with the help of the schematic diagram (to check for poor connections or other interface problems). If the source is faulty, go to para 5.8.6. If these control signals are all valid, the digital control circuitry is functional; the fault is probably in the integrator U38 or associated circuits.
ba. Provide reset pulses in either of 2 ways. Preferably, set up a pulse generator as follows:

Source resistance: 50Ω.
Repetition rate (period): 1 s .
Pulse polarity and duration: positive, 0.5 s .
Dc levels: high $=4.5 \mathrm{~V}$; low $=0 \mathrm{~V}$.
Connect from ground to 45 pin 11.
bb. The alternative method is to short across C1 momentarily (and repeatedly) with a clip lead. Watch the scope carefully for activation, perhaps for only 1 cycle, of PBST and/or PMSR, after each application of the short circuit Notice that this short must be only momentary and that it must not be applied while the pulse generator is connected. Find C1 between Q1 and U25.
bc. If PBST and PMSR remain inactive in spite of the preceding stimulation, the digital control circuitry is at fault: go to para 5.8.6. Otherwise, proceed to step b, continuing to use the reset pulses.

Figure 5-12 Timing diagam, One complete starcase cycle for a ypical SLOW- or MEOIUMrate 1 kHz measurement on a $1658-9700$. The 3 main divisions are: sample cycle (stair steps down), conversion cycle (smooth ramp up, during which a counter arrives at digital value of signal being sampled), and data-taking cycle (microprocessor takes data and sets up for next staircasel. In this example, there are 17 samples taken.

5.8.6 Digital Circuitry.

Display Board. A faulty integrated-circuit package can usually be identified by interchanging plug-in component parts of the same type between display channels. Notice that a resistor network need NOT be replaced as a unit; use ordinary resistors. (See para 5.8.1.)

Recommended Procedure. If careful analysis of a faulty instrument, using the preceding information, indicates that the trouble is in the digital circuitry (whether in control, computation, or display decoding), further analysis is beyond the scope of this manual. Return the faulty board (the MB board, if the fault is digital, and not in the display
board) or return the instrument for service. Refer to para 5.2 and 5.3 .

Special Testing. Because of the very high speed and considerable complexity of the digital circuitry in the MB Board and $10 B$ (Interface Board), it is impossible to analyze trouble there with ordinary test equipment. GenRad production and in-factory service departments make use of fast, versatile automatic test systems (GenRad products). Their efficiency and accuracy are important factors in our recommendation that digital circuit problems be solved by exchanging boards.

Figure 5-13. Timing diagram, One complete measurement cycle for a typical MEDIUN-rate $1-\mathrm{kHz}$ measurement on a $1658-9700$. There are 8 staircase cycles, one with each phase of BST for the signal from the standard and one with each phase of BST for the signal from the DUT.

Parts Lists and Diagrams-Section 6

6.1 GENERAL 6-1
6.2 REFERENCE DESIGNATIONS $6-1$
6.3 DIAGRAMS 6.1
Figure 6-1. Front view, mechanical parts 6.2
Figure 6-2. Rear view, mechanical parts 6.2
Federal Manufacturers Code $6-4$
Figure 6-3. Analog and Control (MB) Board, A700, signal sources diagram 6.5
Figure 6-4. Analog and Control (MB) Board, 1658-4700, layout 6.6
Figure 6-5. Analog and Control (MB) Board, 4700 , front end diagram 6.7
Figure 6-7. Analog and Control (MB) Board, -4700 , digital control center diagram. 6-9
Figure 6-8. (MB) Board, 4700 , measurement counter, display driver diagram 6-11
Figure 6-9. (MB) Board, 4700 , keyboard and display LED interace diagram 6.13
Figure 6-10. Display (DB) Board, $1658-4715$, layout 6-14
Figure 6-11. Display (DB) Board, -4715 , diagram 6-15
Figure 6-12. Keyboard Module, 1658-4200, assembly 6-16
Figure 6-14. Keyboard (KB) Board, 4210, diagram $6-17$
Figure 6-15. Interface Option (IOB) Board, 1658-4720, layout 6.18
Figure 6-16. Interface Option (IOB) Board, -4720 , diagram $6-19$
Figure 6-17. Power Supply (V) Board, 1657-4720, layout 6.21
Figure 6-18. Power Supply (V) Assembly, 1658-4000, diagram $6-21$

6.1 GENERAL.

This section contains the parts lists, circuit-board layout drawings and schematic diagrams for the instrument. (Section 4 contains functional block diagrams. Section 5 contains photographs of the instrument, identifying various parts.) The heavy lines on schematic diagrams denote the major signal flow.

Reference designation usage is described below.

6.2 REFERENCE DESIGNATIONS

Each electrical component part on an assembly is identified on equipment and drawings by means of a reference designator comprised of numbers and letters. Component types on an assembly are numbered sequentially, the numbers being preceeded by a letter designation that identifies the component (R for resistor, C for capacitor, etc.). Some of the less obvious designators are: DS, lamp; O , transistor;
U, integrated circuit; WT, wire tie point; X, J, P, or SO, connector; Y, crystal resonator; Z, network.

Each assembly (typically a circuit board) has its own sequence of designators which can be identified by using prefixes, such as A - for the main frame and V - for power supply. Examples: B-R8 designates B board, resistor 8 ; D-WT2 $=\mathrm{D}$ board, wire-tie point $2 ; \mathrm{CR} 6$ on the V schematic is a shortened form of designator $\mathrm{V} \cdot \mathrm{CR} 6=\mathrm{V}$ board, diode 6. The instrument may contain A-R1, B-R1, C-R1, and D-R1.

6.3 DIAGRAMS,

Generally, each schematic diagram is located on a righthand fold-out page for convenience. The associated layout drawing and parts list are located on the same page, the facing page, or otherwise nearby.

Figure 6-1. Front view, showing replaceable mechanical parts,

Figure 6-2 Rear view, showing replaceable mechanical parts. Notice that item 1 is shighty different from the picture (more rectangular than round).

MECMANICAL PARTS LIST

FRONT

Eigure $6-1$	Quantity	Description	Genrad Part No．	FMC	Megr Part No．
1	4	Foot	5260－2051	24655	5260－2051
2	1	Display panel（plastic）	1658－7032	24655	1658－7032
3	1	Actuator（push rod）	1657－2810	24655	1657－2810
4	1	Guide block assembly	1657－2200	24655	1657－2200
5	1	Card pan	1658－8200	24655	1658－8200
6	1	Instruction card	1658－0110	24655	1658－0110
7	1	Keyboard plate（120 ⿴囗⿱一一口儿）	1658－8045	24655	1658－8045
	or	Keyboard plate（100 Hz）	1658－8046	24655	1658－8046

$\begin{aligned} & \text { Figure } \\ & 6-2 \end{aligned}$	Quantity	Description REAR	GenRad part No．	FMC	Mfgr Part No．
1	1	Power connector J101	4240－0250	82389	EAC－302
2	1	Fuse extractor post Fl	5650－0100	75915	342－004
3	1	Slide switch s2	7910－0832	82389	11A－1266
4	1	Cover（safety）	1657－8120	24655	1657－8120
5	1	Top cover	1657－8060	24655	1657－8060
6	1	Bottom shell	1557－8000	24655	1657－8000

FEDERAL SUPPLY CODE

FOR MANUFACTURERS

From Defense Logistics Agency Microfiche
Ref FMC Column
in Parts Lists

H4-2 SB 708-42 GSA-FSS H4-2

Catse
00136
00192
00194
00194
00327
0043
00656
00779
00779
01125
01223
01526
01939
01963
01903
0271
0211
Manthaturer
McCay Elcins.M. Mony Sbinks FA 17065
Jomes M9. Chicago, 1 L . 60181
Whatice therrs. Los Angetes,CA 90018
Schweber Elcters., Westhurg, RY 17590
Actown. New Bedford, MA 02745
AMP Inc. Harristurg, PA 17105
 Allen Eradey, Miwasuke, Wi 53204
Liton mos, Bewry Hims CA 90213 TRW, Lawnda3e, CA 90260 T, Dakes Tx 7 R222
GE.,Waynesboro, VA 22390 Amerock, Rockford, LL 61 101
Cherry Eictre, Waukeranth 60085 Spectrol Elcmos, City of nedabtry, CA 91745 Fenwall Lab, Morton Grove, 46003 GE. Schenerrady AY 12307 Amphenol, Broadviev, 1 L 60153 ACA, Somervite No 08876
Fastex, Desplains, 11 G0016
Fastex. Desplains, 1L 6016
Canter Ink., Carmbidge, MA 02142
GE, Syracuse, NY 13201 GE,Sy:acuse, NY 13201 Tramsitron, Elctms, Wakefield, MA 0i880 KDI PYocillm, whiparay, N207981 Cleirex, New York Ny 10001 Arrow Hart, Hattord, CT O6306
Digitonics. Abertand NY 11507 Dightonics, Aibertion NY 11507 Component Mg. W. Wridgewater, MA 02379 Tansistor Eletris., Beanargton, VT 05203 Coicon, Chicagoh 60639
TTE Eltras.Pomona, CA 91 Conternc, Pomona, CA 91765 Controls Cogi Amer, Matrose Pk, 1 L \$0100
Viking incts. Chatswarth CA 91311 Viking inct . Chatsworth, CA 91311
 Woketima Eng. Wzkefowd MA 01880 Penduit. Tindey Pk, LL 60477 Thelowe \& Machean, Wetartury, CT whoo Prechion honolith, Sente Clate, CA 95050
Clevita, Cleveland, OHA 4110 Cievite, Cleveland, OH 4A110 WLS Stamp.Clivelona, 1044410 Teledyne Kites solone Een, CA 92075
 Poss Miton, Southampton, Pa
Digitan, Pasudera, CA ©1:05 Eaplo Signel, Baraboo, W1 53013 Cinci Graphr., City of industry.CA 91744 Fairchita, Rountina Viens CA Birtcher, indos Angeles, CA 90032 Amer Semicend, Armoron Hra, 1 L 6000A Ansmetic Cose, Alewnush, NY 12550 US Fasterer, Sheiton, CT DG43
Bowne, Brogeport CT DG605 Bodina, Bridgeport, 106605 Boone Eetra, Chicago, 60018 State Labs, Namy York, NY 10003 Borg Inst, Deizuan, wi 53315 Daitsch Fastener, Los Anseles, CA 90045 Bell Elettc, Chicago, 1260632 Vemairag Fred. Franklin: isker, Nu 07417 GE Eutfat, NY 14220
C8x Components, Water town, MAA 02172 Burgess Baztery,Fretoort, 14 61032 Fenwal Bziters, Framingham, Ma32 0170 Burnsy, Norwalk CT O6852. Shatred Proc. Linden, iNJ D7036 Chasso Swith. Chicago, IL 60647
 National. Sarta Clars, CA 95051 Elter Transistors, Flushing NY 11354 Teledyme. Mountain Ver,CA 34
Hamsin. Lake Milits, WI 53551 Hablin. Lake Milis WI 5355
PCA, Woodturige N1 07095 Clarostat. Dover, NH O3e20 Micrometals, City of hadustry, CA 91744 Ditk $50 n$ Elctrms. Scotadele A 283252 Unitrode Watertown, MA az172 Eeatrocreft. Hopkins, MAN 55343 Themalloy, Dallas, TX 75234
 Solitron Devices, Tappor, NY 100 11418 Foutron Devices, Tappar, NY 1093 Burr Zrown, Twason, AZ 85706 Anadex inst. Van Nuys, CA 91406 Elara Controls. Wilton, A T06697 Amprican Libt Fumarton, CA 92634 TTH, Wh, Pammest Beach FL 33402 Watkins \& Johnson, Pelo Atto,CA 94304 Corbin. Rertinct 6 bo37
Cornell Dubhitr, Newak, th 07101 Coming Gliss, Corming NY 14830 Acopien, Enton PA 18042
 Eltere that \& Spocty, Swohem, MA General inst, Hickswife,Ny 13802 TT. Lawrence Ma toilla Digital Equip.,May nard, Ma 01754

\cos 56259
5771 5877
5855
59730 59330
59875
60399 60399
61007

61637 61864
 61637 81684 63600 63743

Stimpson Spertion, Vatherent, NY 11705
 TRW. Cevelaral0144197 07207 Torricgton, Torington, CT 067 Townsend, Bremmree MA O2184 United Cart Fask, Bowork, My Ward Lemenand Milv, Verron 4×10 Westingharase, Bloornfied, NJ 07003 Weston, NewarkN M07114 Actshmat Cap,New Bedforch MA 02742 Acmms \& Westake, Elikhast in 46514 Chrysier. Detroithil 48231
 Anpesite, Union City 11107087
Ark-Les Swith Watertawn MA Eead Chain. Bridgaport, CT 08605 Eelden, Chicso, 1160644 Eronson, Beetorn Fails, CT OW403 Cambrigge Thermionic, Combrige, MA 02138
Cantilli, Chitan Forgs, 124422 Canfield, Cht iton Forgs, VA 24422
Eussmann. St.Louis, MO 63107 CTS, Enkhar, M 46514
Camon, Lot Anspeles.CA Cora. Chicaco, 1 L 60645
 Continental Carbos, New York, NY Coto Coil, Providence, 102905
 Cinch, Chicaga, it Go624 Dernell., Downey,CA 90241 Elactromotive. Wilimanic, CT 06226
 Wytronits, Eerkeley hits, NJ 07922
Oilight, Brooklynan 11237 Dialight, Brookivn NY 11237
General Hnst. Newark N 107104 General inst, Newark,N, Dzus Fasterner, W. Wlip,NY 11795
 Elortic Srop Mut, Union,NJ07083 Erie., Eriep PA 16512 Amperer Elctrce Hictsvile, NY 1180 A Carking Eletra. HartioncicT Ont10 Eha Resintor, New Yob, JFD Etctrcs, Erookyn, NY 1219 Groov.pin, Pidgeitield, Nj 07657 Hehrerrann, Trenton, Nu 103602
Oumm Nichois Chto Quam Nithois Chicago 1260637
Hotokrome Hartiot 060110 Hoto-Krame, Hartiord, CT 06110
Hubsell, Statard, CT 08497 industriat Cndinzt,Chicage, it 60518 Amphenol, Dantury, CT O6810 Johnson, Wasca, MN 50093
 Karz-Kasch, Dayton, OH 45401 Kuke. Mt Venton NY 10053
Lafartue, Syosset NY 1179 : Linden, Providence, P1 02005

 Mallory Elitre, Dstroit, M 48204 Maurey, Chicago 120616
3 M Co, St Paut, MN 55101 3 MCO, St Paud, MN 55101
Mnor Rupher, Eloomfield, hJ 07003 Milhen, Maidon, MA 02148 Mueller Elcar, Cleveland, OH 48114 Pational Tube Piatsburg pa Oak inds, Grystal Lake IL 60014 Dor Fastenex. Watorbur, CT W6720 Patton Mackuver.Provicimce, R102005
Pass Seymour. S\%racuse Ny 13209

Pass Seynouz, Syrucuse, NY 1320 Pierce Foberts Pubber. Trenton,

Plart Bros. Waterbury, C^{7} On720

Positive Lockwaster, Newark, NJ
AMF,Ffinceton: 1 N 47570
Ravo-Voc. Madison,W1 53703
TFW, Cemper Mu 08103
Triv, Camper, NO 0 103 General Itst, Brookiyn NY 11211 Sigma!nat, Bramtre. MA 021

 Tinnerman, Clevelatry, OH Talephonica, Huntington, NY 11743 Waldes Kohnoor, New York NY 11101 Whasen fubber, Goshen, N 4652 Wremori, Hertiors, CT C6110 Continental Wist., Phiadelighia, PA 19101 Mablory Contrass, Frankiont, 4604 ?
 Tektronix, Baaverton, OR 97005 Vickers, St Louis, MO 63166
 Sprafue, N.Adaras, MA 01247
Motorola, Frasklin $F k$, 126013 Formica, Cincimati, OH 45232 Sand ard OH, Laieyette, 1947902
 An Filter, palimatkee, Wi 53218 Hammarund Mew York, MY 10010 Seknan tnsr, Fullerton, CA 92634
ThW Ramsey, St Lauis,MO 63168

Figure 6-3. Main (MB) board, -4700 , clock and test signal sources.

NOTE: Orientation: Viewed from parts side. Part number: Refer to caption. Symbolism: Outlined area = part; gray ckt pattern (if any)=parts side, black $=$ other side. Pins: Square pad in ckt pattern $=$ collector, I-C pin 1, cathode (of diode), or + end (of capacitor).

Figure 6-4. Main (MB) board, $1658-4700$.

NOTE: 1. SOME OF THE CONNECTIONS TO LEO ARE SHOWN ON 1658-4700-EDE

Figure 6-5. Main (MS) board, -4700 , analog front end and detector.

Figure 6-6. Main (MB) board, 1658-4700, integrated-circuit locator.

\$2UB
UB, ILD UP CLOCK

SYNE Q1 R/ μP
8 DOD10203D4D5D6D7 4 3433$\left.\left.\left.\left.]^{32}\right]^{31}\right]^{3019}\right]^{8 / 27}\right]^{26}$ $\begin{array}{ll}12-17 \\ 19.20\end{array} \quad=-$ 19

$$
\begin{aligned}
& 4 \\
& 3 \\
& 3 \\
& 3
\end{aligned}
$$

$$
\begin{aligned}
& 2-2 \\
& 2-2 \\
& 2-2
\end{aligned}
$$

2.3
2.39
2.3
2.36
2.38
2.48 $2-44$
$2-39$
$2-4$

02030
R10

$$
A+A Z A B A C \text { ASAB } A 1 A B A B A B
$$

$$
\sqrt{2.22+0}-2.24
$$

TO OUTPUT OPTION CONNECTOR
$\left[\begin{array}{r}-41 \\ -42\end{array}\right.$ \square

$$
\begin{aligned}
& 1-2 \\
& z+5 \\
& 2.32 \\
& 2.39
\end{aligned}
$$

$-2-43$
$40-50{ }_{0} \quad 1$
1811
33
y

\qquad
\qquad

$$
\begin{aligned}
& 23168-2 \\
& F \phi \phi \phi-F 7=F
\end{aligned}
$$

-2-6 $\begin{array}{ll} & A 14 \\ -60 & -15\end{array}$ \square \square

$$
\|_{1}^{\prime}
$$

$$
\begin{aligned}
& 810 \\
& 3.3 K+50
\end{aligned}
$$

-
(100
$A C A 1 A E$ A3AC A5AGAT AB A9AODODD

- D $-D 1$ 40 -05
-2-52
n
n
n
n
n
$2-49=$
$2-47-$
-D7

23168 -1
Bकф中-87F:
40 alt
$8765 / 432131$
A 4 能 $4 A B$

PART NU.	FMC	MFGR PART NUMBER
$4400-2060$	72982	3141-4050-651-225m
4400-2050	72982	8131-9050-651-104m
4400-2050	72982	8131-4050-651-104m
4400-2050	72982	8131-M050-651-104M
$4400-2050$	72982	8131-1050-651-104M
4,400-2050	72982	8131-M050-651-104M
4401-3100	72982	0605540254001032
4400-2050	72982	8131-7050-651-104M
4400-2050	72982	8131-4050-651-104m
$4400-2050$	72982	8131-4050-651-104M
4400-2050	72982	8131-1050-651-104m
4400-2050	72962	8131-M050-651-1044
$4400-2050$	72982	8131-M050-651-104M
$4400-2050$	72982	8131-7050-651-104M
$4404-1105$	72982	083108225000101 J
4404-1105	72982	083108225000101 d
4400-2050	72982	8131-1050-651-104m
4400-2050	72982	8131-M050-651-104m
4400-2050	72982	8131-m050-651-1044
4401-3100	72982	0805540250001032
4401-3100	12982	0805540250001032
4401-3100	72532	0805540250001032
4860-7329	56289	$410 P .0022$ UF 10PCT
4400-2050	72982	8131-M050-651-104M
4.400-2050	72982	8131-4050-651-1044
$44^{4} 00-2050$	72982	8131-M050-651-104m
$4400-2050$	72982	8131-m050-651-104m
4401-3100	12982	0805540250001032
4401-3100	72982	0805540250001032
$4450-4800$	56289	1.500685×000642
4401-3100	72982	$08055+0251001032$
4863-3000	84411	$\times 363$ W\% 0. LUF 10PCT
4400-2080	72982	8141-4050-651-225m
4\%01-3100	72982	0805540250001032
4860-8009	56289	4109.039 UF 10PCT
4404-1475	72982	0831082250004713
4404-1105	7298.2	0831082250001013
4.400-6358	72982	8141-50-x $70-474 \mathrm{~K}$
4401-3100	72982	0805540250001032
4401-3100	72982	0805540251001032
$4450-6156$	56289	4301256100016
4404-1105	72982	0831082250001013
4860-7650	56289	410 4 .01 UF 2 PCT
4404-1105	72982	083108225000101 J
4860-7336	56289	410 P . 00237 UF 2 PCT
4401-3100	72982	0805540250001032
6401-3100	72982	0805540251001032
$4550-4300$	56289	1500105×003542
4404-0335	72982	0831082750003301
4860-8248	56289	$410 P 0.47$ UF $10 P C T$
4404-0155	72982	0831082250001503
4401-3100	72982	0805540250001032
4,401-3100	72982	0805540250001032
4401-3100	72982	0805540250001032
4401-3100	72982	0805540250001032
4401-3100	72982	0805540250001032
4710-0535	81349	CM05F046451
4860-8201	56289	410 O . O4TUF 2PCT
4.400-2052	72982	8131-9590-651-224m
$4400-2052$	72982	8131-4050-651-224 ${ }^{\text {m }}$
4400-2082	72982	8551-M050-651-335M
6450-5724	33173	697933
4450-5724	33113	69 F933
4400-0120	95121	QC 2. 2PF 5PCT 500 V

ANALOG AND CONTROL PC BOARD MB P/N $1658-4700$
REFDES PESCRIPTION FART NO. FMC MFGR PART NUMBER

REFDES			DESCRIPTION		
8	16	RES	comp	270 OHM	$5 \mathrm{CL} 1 / 4 \mathrm{~W}$
R	17	RES	camp	15 K	5PCT $1 / 4$ d
R	18	RES	comp	$15 k$	5PCT 1／4w
R	19	RES	comp	15 k	5PCT 1／4
R	20	RES	comp	P 15 k	$5 \mathrm{PCT} 1 / 4 \mathrm{~W}$
Q	21	RES	comp	3.9 K	$5 \mathrm{PCT} 1 / 4 \mathrm{~W}$
R	22	RES	Comp	－ 15 k	5PCT 1／4＊
R	24	RES	Comp	150 OHM	15 5PCT 1／4
R	25	RES	coup	3.9 K	5PCT $1 / 44$
R	26	RES	Comp	－ 1.8 k	5PCT 1／4
R	27	RES	Comp	－ 27 K	$5 \mathrm{PCT} 1 / 2$ \＃
R	28	RES	comp	56 OH顛	$5 \mathrm{PCT} 1 /$ 特
R	29	RES	Comp	10 k	5 SCT $1 / 4 \%$
R	30	RES	comp	10 k	5PCT 1／4 W
R	31	RES	Comp	－ 10%	$5 P C$ 1／4W
R	32	RES	comp	10 k	$5 \mathrm{CCS} 1 / 4{ }^{\text {a }}$
R	33	RES	comp	－ 10 K	5PCT $1 / 4.4$
R	34	RES	comp	3.3 K	5PCT 1／4W
R	35	RES	comp	3.3 k	$5 P \mathrm{CT} 1 / 4 \mathrm{~W}$
R	36	RES	COMP	33 K	5 5PC 1／4
8	37	RES	COMP	5.6 k	$5 \mathrm{SCT} 1 / 4 \mathrm{~W}$
R	38	RES	COMP	33 K	SPCT 1／46
p	39	RES	COMP	10 k	$5 \mathrm{PCT} 1 / 4{ }^{\text {d }}$
R	40	RES	comp	3.3 k	SPCT $1 / 4$ W
R	41	RES	Comp	3.3 K	SPCT 1／4\％
R	42	RES	comp	3.3 K	5PCT 1／4h
R	43	RES	COMP	1504 M	5PCT 1／4
R	44	RES	COMP	51 KOH	Thin $5 P C T$ l／ 4 W
R	45	RES	COmp	1.0 k	
R	46	RES	Comp	1.5 K	SPCT $1 / 4.4$
R	47	RES	COMP	4.7 K	5PCT 1／4W
k	48	RES	FLM	100k	1 PCT $1 / 8 \mathrm{~W}$
R	49	RES	COMP	470 OHm	－5PCT 1／4
R	50	RES	COMP	100 K	$5 \mathrm{PC} \mathrm{C}^{1 / 4}$ W
R	51	RES	FLIM	100k	1 PCT $1 / 8 \mathrm{n}$
R	52	RES	comp	100 x	$5 \mathrm{PCT} 1 / 4 \mathrm{~d}$
R	53	RES	comp	10 K	$5 P C T$ 1／4W
R	54	RES	COMP	3.3 K	5PCT $1 / 4 \mathrm{~W}$
p	55	RES	FLM	39．2k	1 PCT 1／8w
R	56	RES	FLM 3	39．2k	1 PCT $1 / 8 \mathrm{~W}$
R	57	RES	COMP	220 OHm	5PCT 1／6h
R	58	RES	COMP	220 0HM	1 SPCT $1 / 4 \mathrm{H}$
R	59	RES	conp	220 OHM	－5PCT 1／4W
R	60	RES	COMP	100 k	$5 \mathrm{CCT} 1 / 4{ }^{\text {d }}$
R	61	RES	COMP	1.0 K	5 PCT 1／4龺
R	62	RES	PWR	Wh 10 OH	HM ．02PCT 10 OPPP
R	63	RES	FLM	$1 K .02 P C T$	T 10PPM
R	64	RES	FLM	100K．02	PCT 10PPM
p	65	RES	comp	3.3 K	$5 \mathrm{PCT} 1 / 4 \mathrm{~W}$
R	66	RES	COMP	3.3 K	$5 \mathrm{PCT} 1 / 4{ }^{\text {H }}$
R	67	RES	comp	33 OHf	$5 \mathrm{SPCT} 1 / 4.4$
R	68	RES	comp	10 OHM	－5PCT 1／4w
8	69	RES	Flat	2．15教	$1 \mathrm{PCT} 1 / 4 \mathrm{~W}$
R	70	RES	comp	220 OHM	SPCT 1／4．4
R	71	RES	Comp	220 0H紷	－ 5 PCT $1 / 4{ }^{\text {a }}$
R	72	RES	conp	220 OHM	－5PCT I／ 4 W
R	73	RES	COMP	220 OHA	$5 P C T 1 / 4{ }^{\text {d }}$
R	74	RES	Comp	10 K 5	5 PCt $1 / 4{ }^{\text {d }}$
R	75	RES	comp	220 OHM	15 PCT 1／4 ${ }^{\text {d }}$
R	76	RES	comp	220 OHM	－ 5 PCT 1／f4 4
R	77	RES	Comp	220 OHM	5 5 PCT 1／4w
R	78	RES	comp	220 OHM	－5PCT 1／4 约
R	79	RES	comp	220 OHM	－5PCT $1 / 4{ }^{\text {d }}$
8	80	RES	comp	220 OHM	－ $5 \mathrm{PCT} 1 / 4 \mathrm{~N}$
R	81	RES	Comp	220 OHM	$15 \mathrm{CCT} 1 / 4 \%$
R	82	RES	comp	220 OHM	（ 5 PCT $1 / 4 \mathrm{~W}$
R	83	RES	comp	220 0HM	－5PCT $1 / 44$
R	84	RES	Comp	乡．7 k	$5 \mathrm{PCT} 1 / 4 \mathrm{~W}$
R	85	RES	Comp	4.7 K	SPCT $1 / 4$ W
P	86	RES	comp	4.7 K	SPCT 1／4
R	87	RES	Comp	10 k	5 SCT $\frac{1 / 4}{}$
R	80	RES	FLH	2． 15 M	1 PC 考 1／4\％
R	89	RES	COMP	300 K	OHM 5PCT H組

| P4RT | NO | F4C |
| :--- | :--- | :--- |\quad RFGR \quad PART

Figura 6-8. Main (Ms) board, 4700 , measurement counter, display driver.

PARTS \& DIAGRAMS 6. 11

ANALOG ANC CONTROL PC BOARD MB P/N $1658-4700$

| REFDES | | DESCRIPTION | PART | NO. | FMC | MFGR |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REART | | | | | | | NUABER

ELECTRICAL PARTS LIST (cont)

ANALOG AND CONTROL BOARD MB P/N $1658-4700$

REF		DESCRIPTION		PART NO.	FMC	MFG PT. NO.
2	1	THIN FILM	RFSISTOR NETWORK	1658-080.3	24655	1658-0800
2	2	RESISTCR	NETWORK 5.6K 5PCT	6741-0104	24655	6741-0104
2	3	RESISTOR	NETWORK	1657-9810*	24655	1657-0810
2	4	RESISTOR	NETWORK	1657-0810	24655	1657-0810

[^12]

Figure 6-9. Main (MB) board, -4700 , keyboard and display-LED interfaces.

OISPLAY BCARD ASN DB P/N $1658-4715$

[^13]

Bottom view of
U56...64

NOTE: Orientation: Viewed trom parts side Part number: Refer bo caption. Symoolism: Outlined area $=$ part; gray ckt pathern - garts side, black (if any $=$ other tode. Pins: Square padin ck pattern $=$ collector, 青C pin t, cathode lof tiode), or 4 and (of capacitor).

CACH RESOTOA TN Z2 THROUGH Z1015 $220 \Omega=5 \%$
\qquad END BIASON
RANGEMEL

䇗言
$\underbrace{}_{\substack{3.3 \\ R 148}}$

ELECTRICAL PARTS LIST

				KEyboar	RD ASM	PC BO	KB	P/N	8-47			
REF	ES			SCRIPT	ION		PART	NO.	FMC	MFGR	PART	NUMBER
CR	1	LED RED		V5023			6084	1104	71744	CM4		
CR	2	LED RED		V5023			6084	1104	71744	CM4		
CR	3	LED RED		MV5023			6084	1104	71744	CM4		
CR	5	LED RED		$\checkmark 5023$			6084	1104	71744	C.A4		
CR	6	LED RED		4V5023			$6084-$	1104	71744	CM4		
CR	7	LED RED		V5023			6084	1104	71744	CM4		
CR	8	LED GRE	EN				6084	1055	28480	508	950	
CR	9	LED REO		V5023			6084	1104	71744	CM 4		
CR	10	LED RED		VV5023			6034	1104	71744	CM4		
CR	12	LED RED		V5023			6084	1104	71744	CM4		
CR	13	LED RED		VV5023			6084	1104	71744	CM4		
CR	14	LED RED		V5023			6084	1104	71744	CM4		
CR	15	LED RED		V5023			6084	1104	71744	CM4		
CR	17	LED RED		MV5023			6084	1104	71744	CM4		
CR	18	LED RED		V5023			6084	1104	71744	CM4		
p	1	CONN 30	PIN .	. 025 S	Q PO		4230	8095	30146	9296	-02-30	
P	10	CONN 6	PIN.	025SQ	POST		4230	8096	30146	9296	-02-06	
S	1	SWITCH	PLSH N	MOMENT	DPS		$7870-$	1571	31918	TYP	SR BLA	
5	10	SWITCH	SLIDE	2POS	DPDT	StEADY	7910	0470	10389	23-0	-118	
ZS	2	SWITCH	PLSHBU	UTTON	MULT	kerboar	7880-	3200	24655	788	3200	

Figure 6-12. Keyboard module assembly, $1658-4200$.

11

Figure 6-13, Keyboard (KB) circut board, 16584710 , iayout

ELECTRICAL PARTS LIST

NOTE: THIS ASSEMBLY INCLUDES THE $1658-4720$ CIRCUIT BOARD; SEE BELOW.

INTERFACE OPTION PC EOARD $10 E$ P/N 1658-4720

Figure 6.16. Interface option (IOB) board, 1658-4720, diagram,

NOTE: THIS ASSEMBLY INCLUDES TKE 1657-4720 BOARD: SEEBELOW.

Figure 6-17. Power supply (V) board, 1657-4720, leyout.

U1
LM323K

GESISTANCE IS IN OMWS, $K=10^{3}, A=10^{6}$ CAPACITANCE IS 3 FARADS, $p=10^{-6}, p=10^{-12}$ VOLTAGES EXPLANED IN IASTRUCTION BOOK SE舞VCE HOTES \qquad PAMEL CONTROL E-=-=. =APAR COMTPOL 8-SCREWORIVER COWTROL THWIME TE TP=TEST POHT COMPLETE GEFEDEACE DESIGATION IWCLUDES SUOASSEMELY 	.COAPECTIONS \qquad QUTPUT Leaves Sueassembey \qquad OUTPUT REشANS ON SURASSEMELY \qquad

U3

Figure 6-18. Power supply (V) assembly, 1658.4000 , diagram.

GenRad

300 Baker Avenue

 Concord, Massachusetts 01742
ATLANTA

Alabema, Flonide, Georgia, Whississippi, North Carolina, South Carolina, Tennessea
10unwoody Park, Suite 107, Atlanta, GA 30341 Tel: 404/394-5380

*BOSTON

Comecticut, Maine, Massachusettr, New Hampshive, Pbode fland, Vermont
(SALES)
Route 117, Bolton, MA 01740
Tel: 617/646-0550
(SERVICE)
300 Baker Avenue, Concord, MA 01742
Tel: 617/369-8770 TWX: 710 347-1051

* CHICAGO

Illinois, lowe, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Wisconsin
1067 E. State Parkway, Schaumburg, IL 60195
Tel: 312/884-6900. TWX: 910 291-1209

DALLAS

Arkansas, Lousiana, Okiahoma, Texas
777 South Central Expressway, Suite 4.A, Richardson, $T \times 75080$
Tel: 214/234-3357 TWX: 910 867-4771

DAYTON

Kentucky, Indiana, Michigan, Onio, Western Ponnsylvania
3300 South Dixie Drive, Dayton, OH 45439
Tel: $513 / 294-1500$ TWX: $810459-1785$

* LOS ANGELES

Arizona, Hawail, Nevada lClark County only? Southern California
P.O. Box 19500, 17361 Armstrong Avenue Irvine Industrial Complex, Irvine, CA 92714 Tel: 714/540-9830 TWX: $910595-1762$

*NEW YORK

Delaware, New dersey, New York, Eastern Pennsylwania 380 Midland Avenue, Saddle Brook, NJ 07662 Tel: (NJ) 201/791-8990, (NY) 212/964-2722
TWX: 710988-2205

SAN FRANCISCO

Coloraci, Idaho, Montena, Nevada fexcept Clark County, New Mexico, Northern California, Oregon, Washington, Wyoming, Utah
2855 Bowers Avenue, Santa Clara, CA 95051 Tel: 408/985-0662 TWX: 910 338-0291

Alaska 907/279-5741
*WASHINGTON, DC
Maryland, Virginia, West Virginia, Weshington, DC) 15 Firstfield Road, Gaithersburg, MD 20760 Tel: 301/948-7071 TWX: 710828-9741

CANADA
*GenRad, Ltd.
307 Evans Avenue, Toronto, Ontario M8Z 1 K2
Tel: 416/252-3395 TELEX: 06-967624
Montreal 514/747.1052
Ottawa Zenith 88630
EUROPE, AFRICA, and NEAR EAST
*GenRad, Ltd.
Bourne End, Bucks SL8 5 AT, England Tel: (06285) 26611 TELEX: $851-848321$
*Paris 10117970739
*Milano (02) 209257
Munchen (089) 401801
*zurich (01) 552420
*ASIA, PACIFIC, and LATIN AMERICA GenRad, Marketing \& International Division 300 Baker Avenue, Concord, MA 01742 TWX: 710347.1051 - TELEX: $92-3354$ Cable: GENRADCO CONCORD (Mass)

[^0]: Form 1658-0120-D

[^1]: [1] EEEStandard 488-1975, Standard Digital Interface for srom grammable tnstumentation. (See para 2.8 , below.)

[^2]: * Enables entry of limits, which must be entered manually (para 3.6).
 * * Must be specified before initiation of measurement.
 ** An alternative "start" command is GET (group execute trigger), Which is binary 0001000 in conjunction with ATN in the low state.

[^3]: [1] " $\times 3.4-1968$, Code for Information Interchange", avalable from American National Standard' Institute, 1430 Broadway, New York, N.Y. 10018.

[^4]: * Do NOT set the switch to 111 in, because a listen address of "?" would be confused wth an "attention" command. (ASC11 code for "underme" is 1011111 , and or "? " is 0111111 .

[^5]: [1] This swith is provided only if you have the Interface Option. [2] If the extender cable is used, it may be necessary to correct for its capacitance.

[^6]: * Each "A" subrange th the low extension of the lowest rangelexample 0.0001 to $2 \Omega 4$.
 " Each "C" subramge covers aful decade (example, 20 to 200 h) in the basic range anc ar upper tange extension lexample 200 to $999+$ gh, in
 which accuraty is reduced and the overange boht is on the righthand OUT OF PANGE inchcaror).
 * Fach "D" subrange is a further extension of the highest range (example to to g9. $9+\mathrm{Mr}$).

[^7]: * Patent applied for.
 ** If the measurement rate is SLOW, vector components are sampled 45 apart, in order to reject odd hamonics 3,5, 71,13), for greater accuracy.

[^8]: * Equivalents may be substituted.
 * Required for trouble anelvsis (Paragraph 5.8); not required tor Paragraph 5.5.

[^9]: * If the calibrated value of your resistance standard is slighty different from the nominal value or if the standards accuracy is different from the typical accuracy, correct the "acceptable extremes" accordingly.
 +120 Hz or 100 Hz , depen ding on model of Digibridge.

[^10]: * If the callbrated value of your capacitance standard is sifghty different from the nominal value or if the standards accuracy is different from the typlcal accuracy, correct the "acceptable extremes" accordingly.
 -120 Hz to 100 Hz , depending on model of Digibridge.

[^11]: Steps per staircase (pulses/burst, BST; Figure 5-12) 5low/med/ fast rates.

 - Staircases (BST bursts; Figure 5-13) per measurement, for slow/med/fast rates, either frequency.

[^12]: * NOTE: AN OPEN CIRCUIT IN A RESISTOR NETWORK CAN BE REPAIRED BY SHUNTING AN EXTERNAL RESISTOR ACROSS THE APPROPRIATE TERMINALS.
 1658-0800 pins $1-2,2-3,6-7$, or $7-8: 125 k \Omega \pm 0.2 \%$
 $1658-0800$ pins $3-4$ or $5-6$: $35 \mathrm{k} \Omega \pm 0.2 \%$
 1657-0810 (each section): $220 \Omega \pm 5 \%$.
 6741-0104 has a common point (pin 1); each resistor is $5.6 \mathrm{k} \Omega \pm 5 \%$.

[^13]: * NOTE: AN OPEN CTRCUIT IN A RESISTOR NETWORK CAN BE REPATRED BY SEUNTING AN EXTERNAL RESISTOR ACROSS THE APPROPRIATE TERMINALS.
 1657-0810 (each section): $220 \Omega \pm 5 \%$.

